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ABSTRACT: Observations over the past four decades show that the annual hottest temperatures
(TXXx) over Northern Hemisphere midlatitude land have warmed at nearly twice the rate of global-
mean surface temperature (GMST), whereas global climate models span a broad range of TXx-to-
GMST sensitivities from approximately 1 to 4.5. To interpret model spread in terms of physical
processes, we propose a diagnostic framework based on the near-convective neutrality assumption
for hot days in Zhang and Boos (2023). This framework decomposes the sensitivity of TXx to
GMST into two factors: the sensitivity of TXx to mid-tropospheric temperature 7509, and the
sensitivity of 7509 to GMST. For the first factor, ERAS indicates stronger near-surface warming per
unit midtropospheric warming than most CMIP6 members, which is consistent with its smaller
increases in near-surface specific humidity on the hottest days than models. The second factor shows
substantial inter-experiment spread, to which aerosol forcing makes an important contribution. The
framework also extends to summer means and helps interpret regional behavior, including amplified

TXx warming over western Europe and muted warming over the U.S. Midwest.
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SIGNIFICANCE STATEMENT: This study develops a physically grounded diagnostic frame-
work for hot extremes in near-surface air temperatures. It decomposes trends in the annual
hottest temperatures into contributions from free-tropospheric warming and near-surface humidity
changes, corresponding respectively to a top-down stability control and a near-surface moisture
compensation. The framework can be applied at regional or even grid-point level and, unlike ex-
isting ones, does not require rerunning climate model simulations, making it readily applicable to
a variety of datasets including observations, reanalysis, and model outputs. This then greatly facil-
itates identifying the physical causes of model biases in simulating the hot extremes of midlatitude

temperatures.

1. Introduction

The intensification of hot summer temperatures since the 1950s is among the most robust effects of
anthropogenic global warming (Seneviratne et al. 2021). Extreme heat events threaten ecosystems,
human health, and infrastructure, and their negative effect on human health and well-being is
especially prominent in mid-latitude land areas with limited air conditioning access. Accurately
projecting the rate at which the hottest temperatures are warming is thus a key objective.

In this paper, we examine the model simulated changes in hot temperature extremes conditioned
on the annual mean of the global mean surface temperature (GMST) warming based on theory and
observational evidence. Specifically, we analyze the sensitivity of the annual hottest temperatures
(TXx) to global mean surface temperature (GMST), quantified by the ratio ATXx/AGMST. In
parallel, the absolute warming rate of TXx (in K/year) over recent decades serves as a useful
benchmark for evaluating model performance against observations.

Interpreting model simulated extreme events ideally requires a robust diagnostic framework
that enables the decomposition of the model output into contributions from relevant physical
components. As an example, a widely used diagnostic framework for precipitation extremes (P,)

is based on the following scaling (O’Gorman and Schneider 2009):

d
Pe~—e/pwﬂ dz. (1)
dz

be
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Here, changes in P, can be attributed to changes in three factors: thermodynamic effects (dg—;‘“ y

the vertical gradient in saturation specific humidity along a moist adiabat of constant saturation
equivalent potential temperature ), dynamic effects (pw), and precipitation efficiency (€). This
decomposition has been adopted in numerous studies on extreme precipitation to understand
individual model behavior (e.g. Sugiyama et al. 2010) and regional extreme precipitation changes
(e.g. Pfahl et al. 2017). Such decompositions then help to focus research efforts on the factors that
are not best represented in models.

For extreme heat, several studies have decomposed temperature anomalies into contributions
from atmospheric circulation, thermodynamics, land surface conditions, and remote effect of sea
surface temperature variability (e.g. Schumacher et al. 2022; Vautard et al. 2023; Faranda et al.
2023). The flow analog method identifies days with similar circulation patterns and analyzes
extreme temperatures under comparable dynamical conditions (Horowitz et al. 2022; Faranda et al.
2023; Vautard et al. 2023). This approach separates circulation effects from other influences using
only reanalysis data. Another, more commonly used method involves running a GCM in which
selected components (winds, atmospheric temperature, soil moisture, or sea surface temperature)
are prescribed with or nudged to observations (e.g. Schumacher et al. 2022; Duan et al. 2025).
This allows the contributions of individual physical drivers to extreme temperature changes to be
disentangled. Both methods are typically applied to specific regions and can be extended to others,
but with significant effort.

Despite the value of existing approaches, a diagnostic framework for extreme temperatures
analogous to Eq. (1) remains absent. Here, we aim to develop such a framework: a physics-
based decomposition of extreme temperature anomalies that can be applied at the grid-point
level to various global datasets, including observations, reanalyses, and model simulations. This
framework is intended to address the need to diagnose model biases, allow process-based evaluation,
and facilitate the much needed model-observation comparisons of regional temperature extremes
(Shaw et al. 2024).

A scaling relationship that could serve as the counterpart to Eq. (1) for extreme temperatures is
the upper bound theory introduced by Zhang and Boos (2023). This theory recognizes that extreme
temperature events over most midlatitude land are close to convective neutrality, which imposes an

effective upper bound on 2-meter air temperature as a function of the 500-hPa temperature (75q),
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and the deviation of actual surface temperature from this upper bound is governed by the 2-meter
specific humidity (g,; see Figure S5b in Zhang and Boos (2023)). Previous studies (Fischer and
Knutti 2013; Byrne 2021) have also emphasized the role of g, in modulating hot temperature
extremes, but this idea has not yet been formulated into a quantitative diagnostic framework. Here,
we apply the near-convective neutrality condition to decomposing changes in extreme 2-meter
temperature into contributions from 7599 and g;. The former can be loosely interpreted as the
dynamic effect and the latter thermodynamic, drawing a parallel to the decomposition of extreme
precipitation.

In the following, we describe this framework along with data and methods in Section 2. The
results applying this framework to the diagnosis of GCMs are presented in Section 3, followed by

discussion and conclusions in Section 4.

2. Methods

a. Data

We use observations, reanalysis, and global climate model output from the CMIP6 archive, all
based on the rlilplfl realization. For observations, we use the TXx variable from the HadEX3
dataset (Dunn et al. 2020) and the global and hemispheric mean surface temperatures from the
HadCRUTS dataset (Morice et al. 2021). For the ERAS reanalysis, we use the daily maximum of
hourly 2-m air temperature to compute TXx. Daily mean specific humidity is computed from the
daily averages of hourly 2-m dew point temperature and surface pressure, given that the diurnal
cycle of humidity (after applying the L, /c, factor for comparison) is not as pronounced as that
of temperature. We use the daily mean 500-hPa temperature from ERAS for T5¢9, as there the
diurnal variability is weak at that level. For CMIP6, we analyze the Historical, AMIP, SSP3-7.0,
greenhouse-gas-only historical experiment (Hist-GHG), and the idealized 1% per year CO; increase
experiment (1pctCO2). TXx is computed from the daily maximum near-surface air temperature.
We use the daily mean near-surface specific humidity and 500-hPa air temperature from each model
simulation. All analysis focuses on land regions in the Northern Hemisphere between 35°N and

70°N starting from 1979.
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b. Decomposition Framework

The main insight from Zhang and Boos (2023) is that very hot temperatures of the near surface air
are under the constraint of convective neutrality. With this, the difference between the near-surface
moist static energy (MSE) and the free-tropospheric saturation MSE is small. This condition can
be expressed approximately as

MSE; ~ MSE,, 2)

where the subscript s denotes the near-surface level, a the free-tropospheric level, and the super-

script = represents the MSE the air would have at saturation. MSE is defined as

MSE =¢,T+L,q+gz, 3)

where ¢, is the specific heat capacity of air at constant pressure, L, is the latent heat of vaporization,
q 1s the specific humidity, 7" is temperature, z is the geopotential height, and g is the gravitational
acceleration.

Zhang and Boos (2023) show that the annual hottest temperatures over midlatitude land regions
are, on average, at this critical condition described by Eq. (2) (Figure 2 in Zhang and Boos
(2023)). This suggests that these events are nearly neutrally stratified in an average sense, although
the equality remains approximate for individual heatwave events. To proceed, we assume that the
annually hottest days may maintain a small MSE; — MSEZ , at the grid-point level, but this violation
does not change appreciably with warming. This difference can be attributed to entrainment (Duan
et al. 2024) for tropical and subtropical regions and a low-level barrier to convection that allows
the build-up of convective available potential energy (CAPE) in the midlatitudes (Li and Tamarin-
Brodsky 2025). The assumption that it remains invariant can be revisited if compelling evidence
emerges; although we do not see signs of such changes in the present analysis, it remains an open
question for future study.

We now derive the framework within which changes in the annual hottest temperatures will be

decomposed. We perturb Eq. (2) with respect to a reference climate, divide both sides by c¢,AT500
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and noting that this equation is evaluated on the hottest days, replace 7y with TXXx:

ATXx _ dTb(T5()0) Lv Aqs

= — 4)
b
AT500 dTs00 ¢p ATs00
— —
change in change in proximity
upper bound to bound

where T}, (Ts00) is the upper bound for 7 proposed in Zhang and Boos (2023) (see Appendix). The
first term on the right-hand side represents the contribution of free-tropospheric warming, which
raises the upper bound for 7. The second term accounts for the effect of near-surface humidity
(gs), which changes the proximity to the upper bound.

To link back to global mean warming, we additionally have

ATXx (ATXX) ( AT500 ) (5)

AGMST _ \ ATsoo | \AGMST

where GMST denotes the global and annual mean surface temperature.
Equations (4) and (5) together comprise the framework within which TXx warming is decom-

posed.

c. Trends and Sensitivities

All sensitivity metrics of the form Ay/Ax are computed as the ratio of linear trends in the time

series {y;} and {x;}. For each series we fit

yt:byt+ay+et(y), x,:bxt+ax+et(x),

where b, and b, are trends, a, and a, are intercepts, and st(y) and st(x) are regression residuals.

The sensitivity is defined as
Ay by

A b (6)

The standard errors of the slopes, Tb, and o}, , are also obtained from the least-squares fits.

Assuming independence between b, and by, the uncertainty in Ay/Ax is estimated by standard

a5, \2 (o, )2
R "

error propagation:
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These uncertainties are shown as error bars in various figures.

This method may misrepresent changes when the trends in x and y are not linear, however, such
nonlinearity is minimal over the historical period beginning in 1979 and in the future scenario
SSP3-7.0 considered here. The advantage of this approach compared to regressing y directly
against x is to avoid confounding influences from short-term covariability associated with ENSO

or volcanic forcing and to emphasize the long-term warming signal.

3. Results

a. Overview of the decomposition

We focus on the average of TXx over land within 35°N—70°N where surface elevation is less than
1.5 km (denoted by TXx), broadly representative of the midlatitudes (we avoid elevated topography
to reduce the likelihood that the boundary layer encompasses 500 hPa). The AMIP and Historical
experiments exhibit multi-model mean trends in TXx of 0.47 and 0.55 K dec™!, respectively, with
substantial spread across the ~10 ensemble members analyzed. The observed trend over 1979-2014
is 0.33 K dec™! in HadEX3 and 0.31 K dec™! in ERAS, ranking near the lowest Historical member
and between the 10th and 20th percentile of the AMIP ensemble. Extending the ERAS record to
2023 gives a slightly higher trend of 0.37 K dec™! (Figure 1a).

The sensitivity ATXx/AGMST facilitates comparison across experiments with differing warming
levels (Figure 1b). The AMIP and Historical ensemble means of Am/ AGMST are 3.1 and
2.2 respectively, both with notable inter-model spread. TXx from ERAS5 paired with GMST
from HadCRUTS yields 1.8, and HadEX3/HadCRUTS gives 2.0 for ATXx/AGMST. Both of
these values approximately tie with the lowest AMIP member and lie near the 20th percentile in
Historical. The SSP3-7.0 ensemble shows a lower mean of 1.5 with narrower spread, placing
observations and reanalysis around its 70th percentile.

Decomposing ATXx/AGMST into two multiplicative components, as in Eq. (5), reveals that
the forcing-pathway differences in ATXx/AGMST arise primarily from ATsq0/AGMST, while
ATXx/ATso remains relatively consistent among experiments (Figure 2), where Ts is the spatial
average of Tsoo on the annual hottest days. The ERAS reanalysis estimate of ATXx/ATsgy is notably
higher than those from nearly all model members: it lies above the 90th percentile of AMIP and
exceed all ten Historical and ten SSP3-7.0 models. The ERAS estimate of ATsq0/AGMST ranks
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Fic. 1. Trends in TXx (a) and ratios of TXx to global-mean surface temperature (GMST) trends (b) across
CMIP6 models, reanalysis, and observations. TXx refers to the annual maximum daily temperature averaged
over land between 35°N—70°N. Small dots show individual model ensemble members; large markers indicate
multi-model means (for CMIP6) or the observational estimate (for ERAS5 and HadEX3). Vertical bars represent
the standard error of the trend: in panel (a), this is the standard error of the linear fit; in panel (b), it is the standard

error of the trend ratio (see Section c).

at the very bottom of the CMIP6 model ensembles, suggesting that models produce more mid-
tropospheric warming on the hottest days than observed for a given GMST increase. These
offsetting tendencies lead to partial compensation in the full ratio ATXx/AGMST.

We are unable to apply the same decomposition to purely observational data, due to the lack

of long records and sufficient spatial coverage of daily 7500 values. However, the consistency of
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a model’s central estimate with vertical bars denoting standard errors of the ratio of two trends (see Section ¢
for details); large markers indicate multi-model means. For reanalysis and observations, markers show central

estimates with standard error bars estimated the same way as individual models.

ATXx/AGMST and TXx trends between ERAS reanalysis and HadEX3 observations in Figure 1
and the consistency of ERAS mid-tropospheric temperature with satellite and radiosonde estimates
(Zhang and Boos 2023) indicate that ERAS might be a sufficiently good representation of the
atmospheric state during hottest days.

In the following, we address the spread across model ensemble members and observational
datasets in both components of the decomposition: ATXx/ATs0 in Section 3b and AT5yy/ AGMST
in Section 3c. We also extend the framework to a broader range of summer days beyond annual
extremes (Section 3d) and examine the spatial patterns with focus on two representative regions,

namely U.S. Midwest and western Europe (Section 3e).

10
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203 Fic. 3. The upper bound theory largely constrains the annual hottest temperatures in reanalysis and models.
204 Joint distributions of free-tropospheric temperature (7500) and surface temperature (7) with an offset from surface
205 elevation (z5) on TXx days are shown for (a) ERAS, (b) CMIP6 Historical simulations, (c) AMIP simulations,
26 and (d) SSP3-7.0 projections. Shading indicates the mean specific humidity (g/kg) conditioned on TXx days in
207 each (Tsqp, Ty) bin. Contours enclose the regions containing 99% (dotted orange) and 95% (dashed magenta) of
208 the probability density (data points weighted by the cosine of latitudes). The black dashed line denotes the upper

209 bound from Zhang and Boos (2023). A Gaussian filter is applied to smooth the plotted fields for clarity.
201 b. Model-reanalysis discrepancies in surface—midtroposphere coupling
22 1) TXX DAYS IN THE T-T500 PHASE SPACE

20 We now examine the model-reanalysis discrepancy in ATXx/AT50g using Eq. (4). As a first step,

n  we verify that the annual hottest days in ERAS and models are constrained by the upper bound
11
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defined in Eq. (A6). This upper bound depends primarily on physical constants but includes the
prefactor Zsop/T500 in the geopotential term (see Appendix), which could differ across models and
between models and reanalysis. We find that this factor differs by less than 1% across models and
ERAS5, producing nearly identical upper bounds, and therefore use the ERAS estimate of Zs00/7500
for plotting.

Figure 3 shows that surface temperatures adjusted for orography (7 + %zs) generally remain
below the upper bound for TXx days, although some apparent violations occur in the CMIP6
dataset, likely due to model-specific factors such as convective parameterization schemes which
we do not analyze further. The near surface specific humidity (g,) at a height of 2 m increases
largely with the difference between the actual 7§ + %zs and the upper bound throughout the full
range of T5yo values, consistent with Eq. (AS5), in which 7 and ¢, act as compensatory terms on
the left side. At lower Ty, the isolines of ¢ no longer run parallel to the upper bound (Figure 3),
but instead reflect the Clausius—Clapeyron relationship that the capacity of the near-surface air to
hold moisture decreases at cooler temperatures.

We then examine the temporal shift of the joint distribution of 75 and 75¢p in time under
anthropogenic forcing by dividing each dataset into four consecutive chunks in time. In ERAS,
the shift in TXx is almost parallel to the upper bound (red line in Figure 4a), which implies that
the first term on the right-hand side of Eq. (4), dT}(7500)/dT500, dominates over the second term,
L,/cp-Aqs/ATs00. This is consistent with the findings of Figure 4 in Zhang and Boos (2023)
showing that both the upper bound and the actual TXx have changed by similar magnitudes, even
at the 0.25° grid-point scale. CMIP6 models collectively show a more pronounced downward
deviation from the upper bound (Figure 4b-d) not only in the multi-model mean (slopes of thick red
lines) but also for individual members (slopes of thin red lines). If Eq. (4) holds, this downward
departure from the upper bound suggests that the TXx warming of most CMIP6 models might be
accompanied by stronger increases in the specific humidity of the near surface air than in ERAS,
thus reducing surface warming per degree of 7509 warming, which we will next verify by examining

the surface specific humidity trends on the annual hottest days.

12
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Fic. 4. Shift of TXx days in the T — T500 space for (a) ERAS, (b) Historical, (c) AMIP, and (d) SSP3-7.0.
Each contour encloses 95% of data (weighted by area) in each joint distribution. Colored dots are the centroids
of each distribution, reflecting the shift of the distribution with warming. Thick red lines are linear fits of the
multi-model centroids highlighting the shift and thin red lines are the same but for individual models. Dotted

lines are parallel to the upper bound and go through the centroid of the initial distribution.
2) MOISTENING VS. WARMING COMPENSATION

To test the above hypothesis, we directly examine the relationship between ATXx/ATs0 and

L,Ag;/(c pAm), where ¢ is the spatial average of g on the annual hottest days. According to
13
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Scatterplot of ATXx/ AT’ versus L,Aqs/(c pAm) from CMIP6 model simulations and ERAS5. Tsgy and qs
are averages over land within 35°N-70°N on the annual hottest days, then the ratios are computed following the

procedure in Section 2c.

Eq. (4), these two terms should sum to d7}/dT5, the slope of the upper bound. This expectation
is partially supported by a negative correlation between the two terms among CMIP6 members,
regardless of experiment (Figure 5). The ERAS data point lies near the low-moistening, high-
warming end of the model cluster, which helps explain the higher ATXx/ATsoo diagnosed in
ERAS compared to CMIP6 models (Figure 3) and equivalently the steeper slopes in Figure 4.
Among the 30 model members examined for three experiments in Figure 5, all produce stronger

L,Ags/(c, ATso0) than ERAS. These g, trend patterns are broadly consistent with previous findings

14
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(e.g., Dunn et al. 2017; Douville and Plazzotta 2017; Simpson et al. 2024) that observations tend
to show weaker increases in g, than the model mean, particularly over arid regions such as the
southwestern United States (Simpson et al. 2024), and over midlatitude land during summer
(Douville and Plazzotta 2017). Our results suggest that the model-reanalysis discrepancies in
humidity trends may contribute to differences in simulated and observed extreme temperature
responses.

Eq. (4) motivates fitting a linear relationship with slope —1 to the CMIP6 and ERAS data points,
because Am/ ATs0 can be interpreted as the dependent variable, d7}/dT5q the intercept, and
L,Aqs/(c pA%) the independent variable. Fitting such a linear relationship with fixed slope —1

minimizing the mean squared errors results in the following formula for the estimated intercept:
1
4= Z()’i+xi), (8)
1

where x; and y; are the L,/c, - Aqs/ATs00 and ATXx/ATsgo, respectively. The intercept a is
estimated to be 2.3, which is broadly consistent with theoretical expectations for the sensitivity
of the upper bound to T5po, though it aligns more closely with the warmer T5oy values seen in
later decades of the SSP3-7.0 scenario (for the current climate the slope is around 1.9). This
suggests that the effective upper-bound slope in models may be steeper than predicted by theory.
In Figure 3b—d, the envelope formed by the hottest simulated days, which appears as the uppermost
boundary of the T,—T500 scatter, tilts more steeply than the theoretical line and also indicates a
higher effective slope in the models. Possible explanations to this higher slope include enhanced
entrainment associated with lower-tropospheric drying (Duan et al. 2024) and warming-related
changes in convective available potential energy (CAPE) (Singh et al. 2017; Chen et al. 2020; Li
and Tamarin-Brodsky 2025).

This anticorrelation is also evident at the grid-point level across model experiments, as shown
in Figure 6, which shows the correlation coefficient between ATXx/ATsog and L,Aq;/c,AT500
across CMIP6 models. The widespread negative correlation over most land areas indicates that
stronger near-surface moistening is associated with weaker TXx warming, consistent with Eq. (4).
This anticorrelation is particularly strong over northern midlatitude land, including Europe, North

America, and parts of Asia. Correlations are weaker or even positive in dry subtropical regions and
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analysis. Locations of surface elevation over 1.5 km are masked in gray.

semi-arid tropical regions like the Sahel. Although the signal-to-noise ratio is lower at regional
scales and the number of ensemble members is too small to support robust linear fits like that
in Figure 5, the spatial pattern of the correlation still confirms the broader conclusion that lower
warming of TXx in models is linked to excessive trends in near-surface humidity over the Northern
Hemispheric midlatitude in those models. The physical origin of ¢, trends on the annual hottest
days, however, is difficult to determine and lies beyond the scope of this study. Future work is
needed to examine potential contributing factors, such as evapotranspiration, precipitation, and

vertical and horizontal moisture advection.

c. Midtropospheric amplification and the potential role of aerosols

The previous section shows that different experiments produce a similar range of ATXx/AT5¢

values in CMIP6, despite being underestimated relative to ERAS. Here, we focus on the second
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factor on the right-hand side of Eq. (5), ATso0/AGMST. As shown in Section 3a and Figure 2, this
term explains much of the experiment dependence of in ATXx/AGMST.

We first ask whether the spread in ATs50o/AGMST among experiments is restricted to the annual
hottest days or reflects a general pattern, and the results indicate the latter. When using the annual
mean or the June-July-August mean 75y to compute A%/ AGMST, AMIP still produces the
highest ratio, followed by Historical and SSP3-7.0 (Figure 7). This consistency suggests that the
divergent behavior is a general feature of midtropospheric warming, rather than a special case on

the hottest days, with summer conditions providing the closest match to the hottest-day sensitivity.
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The experiment-dependent behavior of ATsq0/AGMST suggests that differences in the forcing
agents matter. Both AMIP and Historical experiments are influenced by substantial reductions
in aerosol emissions in the NH mid-latitudes over recent decades, while SSP3-7.0 is dominated
by greenhouse gas increases and weaker changes in aerosol forcing over this region. This raises
the hypothesis that the pronounced aerosol reductions in AMIP and Historical are at least partly
responsible for their higher ATso)/AGMST values. To test this, we apply the same analysis to
the historical simulation with greenhouse gas forcing only (Hist-GHG) and find that the resulting
ATs00/ AGMST is reduced relative to Historical and comes close to that of SSP3-7.0. The idealized
1% per year CO, increase experiment (1pctCO?2), another experiment that does not include aerosol
forcing and therefore exhibits no changes in aerosol forcing, also yields similar ATs0o/ AGMST
to SSP3-7.0 (Figure 7). These results support the interpretation that the rapid decline in aerosol
forcing over the NH mid-latitudes is a primary driver of the elevated ATsq0/AGMST values in
AMIP and Historical relative to SSP3-7.0. The higher AT500/AGMST in AMIP compared to
Historical likely comes from sea surface temperature patterns.

The higher ATs09/AGMST in global climate models is qualitatively consistent with prior work
finding a faster warming trend in the free troposphere in the models than derived from satellite
observations (Santer et al. 2017a), which is most pronounced in the tropics but persists into

near-global averages (Santer et al. 2017b).

d. Extending the framework beyond annual hottest days

The preceding analysis focuses on the annual hottest days (TXx). Here, we examine whether the
same physical mechanisms also govern temperature trends across a broader range of hot summer
days. We show linear trends in surface temperature (75) and other relevant variables as a function
of percentile thresholds that progressively include more days—from the single hottest day (1.1%)
to the full June—July—August average (100%) (Figure 8).

The warming trend of average summer days (June—July—August mean) is comparable to that of
the hottest days in both ERAS (Fig. 8a) and the CMIP6 multi-model mean (Fig. 8b). This finding is
consistent with previous observations that the most extreme summer temperatures have not warmed

substantially faster than the seasonal average (McKinnon et al. 2024).
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Fic. 8. (a) Linear trends in surface temperature (7} ), scaled near-surface specific humidity (L, g /c ), their sum
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the standard error of the linear regression slope. (b) Same as (a) but for the CMIP6 Historical experiment.
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of the regression slopes. (c) Climatologies of moist static energy (MSE) at 2-m level (MSE;) and saturation
MSE at 500-hPa level (MSEZ, ) across percentiles of air temperature at 2 m in ERAS. (d) Same as (c) but for

multi-model mean of the CMIP6 Historical experiment.

We then examine the trends in near-surface moist static energy (MSEy), specific humidity (gj),
and 750 across percentiles. All these trends are relatively insensitive to percentile in both ERAS and
CMIP6. The key difference between the datasets is that the MSE; trend in ERAS is predominantly
driven by Ty, whereas in CMIP6, T and g, contribute roughly equally.

Near-convective neutrality implies that MSE; and MSEZ,, should be approximately equal. Using

daily averaged fields from CMIP6, we find that models reproduce the ERAS climatology of these
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quantities: on the annual hottest days, MSE; and MSEZ,, are nearly equal, and their difference
increases to ~ 5 Jg~! for the summer mean. Analysis of daily maxima in ERAS5 shows a similar
pattern, with MSE; exceeding MSEZ,, by about 5 J g~ ! on the hottest days and nearly matching it
for the summer mean. Overall, the MSE differences (MSES-MSE;)O) remain within about +5 J g~ !,
indicating that both the hottest days and mean summer days remain close to convective neutrality.

These results suggest that the convective upper-bound framework can be extended beyond annual
extremes to help diagnose and interpret trends in summer mean temperatures. This may help
explain the observed lack of amplification in extreme temperatures relative to the seasonal average

(McKinnon et al. 2024).

e. Spatial patterns and regional signals

We next examine the spatial patterns of ATXx/AGMST and assess the potential of this framework
for interpreting regional trends. Both HadEX3 and ERAS5 exhibit strongly nonuniform sensitivities
over the past few decades, with the most notable signals emerging over Europe and North America
(Figure 9a,b). Over Europe, TXx has increased faster than over other regions, consistent with prior
findings (Vautard et al. 2023). In contrast, parts of North America show a negative trend in TXX,
with the cooling signal more widespread in HadEX3 than in ERAS. This “warming hole” in TXx
could be linked to irrigation-related effects (Thiery et al. 2020) and circulation changes (Singh
et al. 2023) over that region. In the following, we focus on these two regions.

The near-zero observed trend of TXx (Figure 10a) and the sensitivity ATXx/AGMST (Figure
10b) over parts of North America lie outside the model ensemble in which all members predict
positive trends (this is true for the central estimates, although some of the standard errors overlap).
Decomposition reveals that the term Am/ ATso0 in CMIP6 models is larger than in ERAS
(Figure 11a), contributing to their more positive ATXx/AGMST (there is less disagreement when
the ERAS trend is extended through 2023, but this goes beyond the end date of the Historical and
AMIP runs). This is consistent with the fact that the models simulate insufficient increase in g
during hot days per degree of 7509 warming (Figure 11b). This discrepancy may reflect enhanced
irrigation and soil moisture storage of that region over recent decades and these processes may

not be well represented in CMIP6 simulations. The expected anti-correlation between the TXx
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warming term and the surface air moistening term holds; the slope is shallower than the -1 predicted
by Equation (4), but a fair amount of scatter exists.

European TXx has been warming at a rate of around 4 K with each Kelvin of global mean
surface warming according to both HadEX3 and ERAS (Figure 10 c), which is above most models

in the Historical experiment but similar to the average AMIP ensemble. The absolute TXXx trends
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over this region fall within the model spread of both AMIP and Historical experiments (Figure
10d). Decomposition of the sensitivity ATXx/AGMST shows that ERAS exhibits higher values of
Am/ ATsyy than CMIP6 multi-model means, while the AT500/AGMST term remains relatively
consistent across ERAS and the Historical ensemble (Figure 11c). The lower ATXx/AGMST
seen in the Historical simulations is therefore primarily driven by a muted ATXx/ATsg response
which is mechanistically linked to a stronger increase in surface air specific humidity g, per unit
Ts00 warming on hot days (Figure 11d). The same anti-correlation between Am/ ATs0o and
L,/c,-Ags/ ATsgo observed in the midlatitude land mean (Figure 2) also holds when the analysis
is restricted to Europe (Figure 11d).

These two regional cases illustrate contrasting directions of model-observation disagreement.
In both, trends in L, /c,, - Aqy/AT500 on the hottest days emerge as a key factor shaping differences
in ATXx/ATsq. This result thus echoes previous studies that emphasize the importance of
land—atmosphere feedbacks and soil moisture control on European heat extremes (e.g., Vogel
et al. 2017), as well as the influence of irrigation on temperature extremes over the US Midwest

(Nocco et al. 2019).

4. Summary and Conclusions

This study presents a physics-based framework for diagnosing hot temperature trends over mid-
latitude land. Building on the upper bound theory, we formulate a decomposition that separates
the trends of the annual hottest temperatures (TXX) into two components: the sensitivity of TXx to
midtropospheric warming (ATXx/ATsq) and the amplification of midtropospheric warming rela-
tive to global mean surface temperature (ATs50o/AGMST). This framework enables interpretation
of modeled TXXx trends in terms of free-tropospheric dynamics and local-scale land-atmosphere
coupling, and facilitates comparison across models, experiments, and observations.

A key finding is that ERAS estimates of ATXx /AT lie at the upper end of the CMIP6 model
ensemble distribution examined, which coexists with excessive moistening in models on the annual
hottest days. This factor, ATXx/AT500, quantifies the shift of annual hottest days in the T — T5q
phase space. While ATXx/ATso remains relatively consistent across CMIP6 experiments for
average annual hottest days over land between 35°N and 70°N, the ERAS5 value exceeds nearly all

30 individual model members across AMIP, Historical, and SSP3-7.0 ensembles (Figures 2, 4),
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although the standard error of the ERAS estimate does encompass most models. Across models
and ERAS, ATXx/ATsq is negatively correlated with L,Aq;/(c pA%) (Figure 5), consistent
with the thermodynamic constraint imposed by moist convective neutrality that stronger near-
surface moistening reduces the allowable surface warming under the same moist static stability.
Further research is warranted on the causes of excessive near-surface moistening during midlatitude
summers in CMIP6 models.

The diagnosis of the warming—moistening relation for regions also reveals useful information.

Parts of North America and Europe are known for exhibiting TXx trends that diverge from the
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America box (a) and the Europe box (c), and the compensationg relationship between surface warming and

moistening on the annual hottest days for these two regions (b,d)

broader midlatitude land patterns, in opposite directions (Figure 9). The anticorrelation between
ATXx/ATso and L, Ag;/ (cp ATso) for these smaller regions indicates that Eq. (4) remains a
useful constraint at regional scales. ERAS lying at the high-warming, low-moistening end of the
model distribution for Europe, and at the low-warming, high-moistening end for North America
(Figure 11b,d) suggests that land-surface processes contribute to the anomalous TXx trends in
these two regions.

ATs00/ AGMST varies strongly across experiments and explains most of the experiment depen-

dence of ATXx/AGMST. This variation is potentially linked to the changes in aerosol forcing. Ex-
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periments with large aerosol reductions (e.g., AMIP, Historical) show exaggerated ATs50o/AGMST,
while greenhouse gas—dominated experiments such as SSP3-7.0 show moderate AT500/AGMST.
Other factors such as SST warming patterns and arctic amplification could also contribute, but are
not investigated here.

We further show that this diagnostic framework based on near-convective neutrality applies
similarly well to the annual hottest days as to the June-July-August mean. This is broadly consistent
with prior findings that midlatitude land regions in summer exhibit behaviors considered typical
of the tropics, including the near-moist adiabatic vertical temperature profiles and a net divergence
of moist static energy (Korty and Schneider 2007; Miyawaki et al. 2022).

Finally, the decomposition framework and the anti-correlation between warming and moistening
on the hottest days shown in Figure 5 may serve as a basis of emergent constraints on future
TXx change. Extensions to other climate zones, variables, and heat stress metrics could also be
explored in future work. Although our analysis is primarily based on ERAS, the close agreement
between ERAS TXXx trends and observational datasets, as well as the consistency of ERAS mid-
tropospheric temperatures with satellite and radiosonde estimates (Zhang and Boos 2023), supports
the credibility of the results. Future work incorporating more regional observations will help further

evaluate the robustness of these findings.
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APPENDIX

Derivation of the diagnostic framework

Expanding Eq. (2) using the definition of MSE in Eq. (3) leads to

cpTy+Lygs+gzs = cpTs00+ Lyqsa(T500) +£2500 (A1)

where the approximate equality holds when all terms are evaluated on the annual hottest days. T5q,
qsat(Ts00), and z50p represent the temperature, saturation specific humidity, and geopotential height
at the 500-hPa pressure level, respectively.

The saturation specific humidity g, is computed from the saturation vapor pressure and ambient

pressure using the following expression:

€ esa(T)
p— (1 - 6) esat(T) ’

QSat(T’ p) = (A2)

where € = R; /R, is the ratio of the gas constants for dry air and water vapor, and p is the ambient
pressure. The saturation vapor pressure eg, (7) is evaluated using the Clausius—Clapeyron relation

in the form of the Tetens approximation:

(A3)

esat(T) = ay eXp (M) ,

where a; =611.21Pa, ap = 17.502, az =32.19K, and Ty = 273.15K.
To further simplify Eq. (A1), the approximation for z509 from Zhang and Boos (2023) is adopted,

assuming a linear relationship between zs09 and 75y,

Z
2500 & =2 T500, (A4)

Ts00
where Z500 and Tsg are June-July-August climatological geopotential height and temperature at
500 hPa, taking the values of 5682 m and 258.8 K, respectively. Substituting this approximation
into Eq. (A1) gives

2500
CplsT8Zs vds ~ Cpl500 v sat\ 4500 —— 1500 = CpLp\L500)-
Ty+ gz, +1L Ts00+ Ly gsa(T500) + 2. T, (Ts00) (A5)

T500
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T}, is the same as T max 1n Zhang and Boos (2023) (switched to avoid confusion with the annual

maximum temperature here) and is a function of 75go alone:

L 87500
Ty (Ts500) = Ts00 + C—vqsat(Tsoo) +—=——=T500. (A6)

p ¢pTs500

Perturbing Eq. (2) with respect to a reference climate thus gives

dTy (Ts00)

ATs00. A7
o0 500 (A7)

cpATs+ L,Agg = c)
Dividing Eq. (A7) by ¢, ATs0o and replacing T with TXx gives Eq. (4).
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