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ABSTRACT: Observations over the past four decades show that the annual hottest temperatures

(TXx) over Northern Hemisphere midlatitude land have warmed at nearly twice the rate of global-

mean surface temperature (GMST), whereas global climate models span a broad range of TXx-to-

GMST sensitivities from approximately 1 to 4.5. To interpret model spread in terms of physical

processes, we propose a diagnostic framework based on the near-convective neutrality assumption

for hot days in Zhang and Boos (2023). This framework decomposes the sensitivity of TXx to

GMST into two factors: the sensitivity of TXx to mid-tropospheric temperature 𝑇500, and the

sensitivity of 𝑇500 to GMST. For the first factor, ERA5 indicates stronger near-surface warming per

unit midtropospheric warming than most CMIP6 members, which is consistent with its smaller

increases in near-surface specific humidity on the hottest days than models. The second factor shows

substantial inter-experiment spread, to which aerosol forcing makes an important contribution. The

framework also extends to summer means and helps interpret regional behavior, including amplified

TXx warming over western Europe and muted warming over the U.S. Midwest.
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SIGNIFICANCE STATEMENT: This study develops a physically grounded diagnostic frame-25

work for hot extremes in near-surface air temperatures. It decomposes trends in the annual26

hottest temperatures into contributions from free-tropospheric warming and near-surface humidity27

changes, corresponding respectively to a top-down stability control and a near-surface moisture28

compensation. The framework can be applied at regional or even grid-point level and, unlike ex-29

isting ones, does not require rerunning climate model simulations, making it readily applicable to30

a variety of datasets including observations, reanalysis, and model outputs. This then greatly facil-31

itates identifying the physical causes of model biases in simulating the hot extremes of midlatitude32

temperatures.33

1. Introduction34

The intensification of hot summer temperatures since the 1950s is among the most robust effects of35

anthropogenic global warming (Seneviratne et al. 2021). Extreme heat events threaten ecosystems,36

human health, and infrastructure, and their negative effect on human health and well-being is37

especially prominent in mid-latitude land areas with limited air conditioning access. Accurately38

projecting the rate at which the hottest temperatures are warming is thus a key objective.39

In this paper, we examine the model simulated changes in hot temperature extremes conditioned40

on the annual mean of the global mean surface temperature (GMST) warming based on theory and41

observational evidence. Specifically, we analyze the sensitivity of the annual hottest temperatures42

(TXx) to global mean surface temperature (GMST), quantified by the ratio ΔTXx/ΔGMST. In43

parallel, the absolute warming rate of TXx (in K/year) over recent decades serves as a useful44

benchmark for evaluating model performance against observations.45

Interpreting model simulated extreme events ideally requires a robust diagnostic framework46

that enables the decomposition of the model output into contributions from relevant physical47

components. As an example, a widely used diagnostic framework for precipitation extremes (𝑃𝑒)48

is based on the following scaling (O’Gorman and Schneider 2009):49

𝑃𝑒 ∼ −𝜖
∫

𝜌𝑤
d𝑞sat
d𝑧

����
𝜃∗𝑒

d𝑧. (1)
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Here, changes in 𝑃𝑒 can be attributed to changes in three factors: thermodynamic effects ( d𝑞sat
d𝑧

���
𝜃∗𝑒

,50

the vertical gradient in saturation specific humidity along a moist adiabat of constant saturation51

equivalent potential temperature 𝜃∗𝑒), dynamic effects (𝜌𝑤), and precipitation efficiency (𝜖). This52

decomposition has been adopted in numerous studies on extreme precipitation to understand53

individual model behavior (e.g. Sugiyama et al. 2010) and regional extreme precipitation changes54

(e.g. Pfahl et al. 2017). Such decompositions then help to focus research efforts on the factors that55

are not best represented in models.56

For extreme heat, several studies have decomposed temperature anomalies into contributions57

from atmospheric circulation, thermodynamics, land surface conditions, and remote effect of sea58

surface temperature variability (e.g. Schumacher et al. 2022; Vautard et al. 2023; Faranda et al.59

2023). The flow analog method identifies days with similar circulation patterns and analyzes60

extreme temperatures under comparable dynamical conditions (Horowitz et al. 2022; Faranda et al.61

2023; Vautard et al. 2023). This approach separates circulation effects from other influences using62

only reanalysis data. Another, more commonly used method involves running a GCM in which63

selected components (winds, atmospheric temperature, soil moisture, or sea surface temperature)64

are prescribed with or nudged to observations (e.g. Schumacher et al. 2022; Duan et al. 2025).65

This allows the contributions of individual physical drivers to extreme temperature changes to be66

disentangled. Both methods are typically applied to specific regions and can be extended to others,67

but with significant effort.68

Despite the value of existing approaches, a diagnostic framework for extreme temperatures69

analogous to Eq. (1) remains absent. Here, we aim to develop such a framework: a physics-70

based decomposition of extreme temperature anomalies that can be applied at the grid-point71

level to various global datasets, including observations, reanalyses, and model simulations. This72

framework is intended to address the need to diagnose model biases, allow process-based evaluation,73

and facilitate the much needed model-observation comparisons of regional temperature extremes74

(Shaw et al. 2024).75

A scaling relationship that could serve as the counterpart to Eq. (1) for extreme temperatures is76

the upper bound theory introduced by Zhang and Boos (2023). This theory recognizes that extreme77

temperature events over most midlatitude land are close to convective neutrality, which imposes an78

effective upper bound on 2-meter air temperature as a function of the 500-hPa temperature (𝑇500),79
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and the deviation of actual surface temperature from this upper bound is governed by the 2-meter80

specific humidity (𝑞𝑠; see Figure S5b in Zhang and Boos (2023)). Previous studies (Fischer and81

Knutti 2013; Byrne 2021) have also emphasized the role of 𝑞𝑠 in modulating hot temperature82

extremes, but this idea has not yet been formulated into a quantitative diagnostic framework. Here,83

we apply the near-convective neutrality condition to decomposing changes in extreme 2-meter84

temperature into contributions from 𝑇500 and 𝑞𝑠. The former can be loosely interpreted as the85

dynamic effect and the latter thermodynamic, drawing a parallel to the decomposition of extreme86

precipitation.87

In the following, we describe this framework along with data and methods in Section 2. The88

results applying this framework to the diagnosis of GCMs are presented in Section 3, followed by89

discussion and conclusions in Section 4.90

2. Methods91

a. Data92

We use observations, reanalysis, and global climate model output from the CMIP6 archive, all93

based on the r1i1p1f1 realization. For observations, we use the TXx variable from the HadEX394

dataset (Dunn et al. 2020) and the global and hemispheric mean surface temperatures from the95

HadCRUT5 dataset (Morice et al. 2021). For the ERA5 reanalysis, we use the daily maximum of96

hourly 2-m air temperature to compute TXx. Daily mean specific humidity is computed from the97

daily averages of hourly 2-m dew point temperature and surface pressure, given that the diurnal98

cycle of humidity (after applying the 𝐿𝑣/𝑐𝑝 factor for comparison) is not as pronounced as that99

of temperature. We use the daily mean 500-hPa temperature from ERA5 for 𝑇500, as there the100

diurnal variability is weak at that level. For CMIP6, we analyze the Historical, AMIP, SSP3-7.0,101

greenhouse-gas-only historical experiment (Hist-GHG), and the idealized 1% per year CO2 increase102

experiment (1pctCO2). TXx is computed from the daily maximum near-surface air temperature.103

We use the daily mean near-surface specific humidity and 500-hPa air temperature from each model104

simulation. All analysis focuses on land regions in the Northern Hemisphere between 35◦N and105

70◦N starting from 1979.106

5



b. Decomposition Framework107

The main insight from Zhang and Boos (2023) is that very hot temperatures of the near surface air108

are under the constraint of convective neutrality. With this, the difference between the near-surface109

moist static energy (MSE) and the free-tropospheric saturation MSE is small. This condition can110

be expressed approximately as111

MSE𝑠 ≈ MSE∗
𝑎, (2)

where the subscript 𝑠 denotes the near-surface level, 𝑎 the free-tropospheric level, and the super-112

script ∗ represents the MSE the air would have at saturation. MSE is defined as113

MSE = 𝑐𝑝𝑇 + 𝐿𝑣𝑞 +𝑔𝑧, (3)

where 𝑐𝑝 is the specific heat capacity of air at constant pressure, 𝐿𝑣 is the latent heat of vaporization,114

𝑞 is the specific humidity, 𝑇 is temperature, 𝑧 is the geopotential height, and 𝑔 is the gravitational115

acceleration.116

Zhang and Boos (2023) show that the annual hottest temperatures over midlatitude land regions117

are, on average, at this critical condition described by Eq. (2) (Figure 2 in Zhang and Boos118

(2023)). This suggests that these events are nearly neutrally stratified in an average sense, although119

the equality remains approximate for individual heatwave events. To proceed, we assume that the120

annually hottest days may maintain a small MSE𝑠−MSE∗
500 at the grid-point level, but this violation121

does not change appreciably with warming. This difference can be attributed to entrainment (Duan122

et al. 2024) for tropical and subtropical regions and a low-level barrier to convection that allows123

the build-up of convective available potential energy (CAPE) in the midlatitudes (Li and Tamarin-124

Brodsky 2025). The assumption that it remains invariant can be revisited if compelling evidence125

emerges; although we do not see signs of such changes in the present analysis, it remains an open126

question for future study.127

We now derive the framework within which changes in the annual hottest temperatures will be128

decomposed. We perturb Eq. (2) with respect to a reference climate, divide both sides by 𝑐𝑝Δ𝑇500129
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and noting that this equation is evaluated on the hottest days, replace 𝑇𝑠 with TXx:130

ΔTXx
Δ𝑇500

=
d𝑇𝑏 (𝑇500)

d𝑇500
change in

upper bound

− 𝐿𝑣

𝑐𝑝

Δ𝑞𝑠

Δ𝑇500

change in proximity
to bound

, (4)

where 𝑇𝑏 (𝑇500) is the upper bound for 𝑇𝑠 proposed in Zhang and Boos (2023) (see Appendix). The131

first term on the right-hand side represents the contribution of free-tropospheric warming, which132

raises the upper bound for 𝑇𝑠. The second term accounts for the effect of near-surface humidity133

(𝑞𝑠), which changes the proximity to the upper bound.134

To link back to global mean warming, we additionally have135

ΔTXx
ΔGMST

=

(
ΔTXx
Δ𝑇500

) (
Δ𝑇500

ΔGMST

)
, (5)

where GMST denotes the global and annual mean surface temperature.136

Equations (4) and (5) together comprise the framework within which TXx warming is decom-137

posed.138

c. Trends and Sensitivities139

All sensitivity metrics of the form Δ𝑦/Δ𝑥 are computed as the ratio of linear trends in the time140

series {𝑦𝑡} and {𝑥𝑡}. For each series we fit141

𝑦𝑡 = 𝑏𝑦𝑡 + 𝑎𝑦 + 𝜖 (𝑦)𝑡 , 𝑥𝑡 = 𝑏𝑥𝑡 + 𝑎𝑥 + 𝜖 (𝑥)𝑡 ,

where 𝑏𝑦 and 𝑏𝑥 are trends, 𝑎𝑦 and 𝑎𝑥 are intercepts, and 𝜀
(𝑦)
𝑡 and 𝜀

(𝑥)
𝑡 are regression residuals.142

The sensitivity is defined as143

Δ𝑦

Δ𝑥
=
𝑏𝑦

𝑏𝑥
. (6)

The standard errors of the slopes, 𝜎𝑏𝑦 and 𝜎𝑏𝑥 , are also obtained from the least-squares fits.144

Assuming independence between 𝑏𝑦 and 𝑏𝑥 , the uncertainty in Δ𝑦/Δ𝑥 is estimated by standard145

error propagation:146

𝜎Δ𝑦/Δ𝑥 =

����𝑏𝑦𝑏𝑥
����
√︄(

𝜎𝑏𝑦

𝑏𝑦

)2
+
(
𝜎𝑏𝑥

𝑏𝑥

)2
. (7)
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These uncertainties are shown as error bars in various figures.147

This method may misrepresent changes when the trends in 𝑥 and 𝑦 are not linear, however, such148

nonlinearity is minimal over the historical period beginning in 1979 and in the future scenario149

SSP3-7.0 considered here. The advantage of this approach compared to regressing 𝑦 directly150

against 𝑥 is to avoid confounding influences from short-term covariability associated with ENSO151

or volcanic forcing and to emphasize the long-term warming signal.152

3. Results153

a. Overview of the decomposition154

We focus on the average of TXx over land within 35◦N–70◦N where surface elevation is less than161

1.5 km (denoted by TXx), broadly representative of the midlatitudes (we avoid elevated topography162

to reduce the likelihood that the boundary layer encompasses 500 hPa). The AMIP and Historical163

experiments exhibit multi-model mean trends in TXx of 0.47 and 0.55 K dec−1, respectively, with164

substantial spread across the∼10 ensemble members analyzed. The observed trend over 1979–2014165

is 0.33 K dec−1 in HadEX3 and 0.31 K dec−1 in ERA5, ranking near the lowest Historical member166

and between the 10th and 20th percentile of the AMIP ensemble. Extending the ERA5 record to167

2023 gives a slightly higher trend of 0.37 K dec−1 (Figure 1a).168

The sensitivityΔTXx/ΔGMST facilitates comparison across experiments with differing warming169

levels (Figure 1b). The AMIP and Historical ensemble means of ΔTXx/ΔGMST are 3.1 and170

2.2 respectively, both with notable inter-model spread. TXx from ERA5 paired with GMST171

from HadCRUT5 yields 1.8, and HadEX3/HadCRUT5 gives 2.0 for ΔTXx/ΔGMST. Both of172

these values approximately tie with the lowest AMIP member and lie near the 20th percentile in173

Historical. The SSP3-7.0 ensemble shows a lower mean of 1.5 with narrower spread, placing174

observations and reanalysis around its 70th percentile.175

Decomposing ΔTXx/ΔGMST into two multiplicative components, as in Eq. (5), reveals that181

the forcing-pathway differences in ΔTXx/ΔGMST arise primarily from Δ𝑇500/ΔGMST, while182

ΔTXx/Δ𝑇500 remains relatively consistent among experiments (Figure 2), where 𝑇500 is the spatial183

average of𝑇500 on the annual hottest days. The ERA5 reanalysis estimate ofΔTXx/Δ𝑇500 is notably184

higher than those from nearly all model members: it lies above the 90th percentile of AMIP and185

exceed all ten Historical and ten SSP3-7.0 models. The ERA5 estimate of Δ𝑇500/ΔGMST ranks186
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Fig. 1. Trends in TXx (a) and ratios of TXx to global-mean surface temperature (GMST) trends (b) across

CMIP6 models, reanalysis, and observations. TXx refers to the annual maximum daily temperature averaged

over land between 35°N–70°N. Small dots show individual model ensemble members; large markers indicate

multi-model means (for CMIP6) or the observational estimate (for ERA5 and HadEX3). Vertical bars represent

the standard error of the trend: in panel (a), this is the standard error of the linear fit; in panel (b), it is the standard

error of the trend ratio (see Section c).
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at the very bottom of the CMIP6 model ensembles, suggesting that models produce more mid-187

tropospheric warming on the hottest days than observed for a given GMST increase. These188

offsetting tendencies lead to partial compensation in the full ratio ΔTXx/ΔGMST.189

We are unable to apply the same decomposition to purely observational data, due to the lack190

of long records and sufficient spatial coverage of daily 𝑇500 values. However, the consistency of191
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Fig. 2. Decomposition of TXx warming per Kelvin of GMST warming. Shown are the ratios ΔTXx/ΔGMST,

Δ𝑇500/ΔGMST, and ΔTXx/Δ𝑇500 for CMIP6 models and ERA5. For CMIP6 models, each small dot shows

a model’s central estimate with vertical bars denoting standard errors of the ratio of two trends (see Section c

for details); large markers indicate multi-model means. For reanalysis and observations, markers show central

estimates with standard error bars estimated the same way as individual models.
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180

ΔTXx/ΔGMST and TXx trends between ERA5 reanalysis and HadEX3 observations in Figure 1192

and the consistency of ERA5 mid-tropospheric temperature with satellite and radiosonde estimates193

(Zhang and Boos 2023) indicate that ERA5 might be a sufficiently good representation of the194

atmospheric state during hottest days.195

In the following, we address the spread across model ensemble members and observational196

datasets in both components of the decomposition: ΔTXx/Δ𝑇500 in Section 3b and Δ𝑇500/ΔGMST197

in Section 3c. We also extend the framework to a broader range of summer days beyond annual198

extremes (Section 3d) and examine the spatial patterns with focus on two representative regions,199

namely U.S. Midwest and western Europe (Section 3e).200
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Fig. 3. The upper bound theory largely constrains the annual hottest temperatures in reanalysis and models.

Joint distributions of free-tropospheric temperature (𝑇500) and surface temperature (𝑇𝑠) with an offset from surface

elevation (𝑧𝑠) on TXx days are shown for (a) ERA5, (b) CMIP6 Historical simulations, (c) AMIP simulations,

and (d) SSP3-7.0 projections. Shading indicates the mean specific humidity (g/kg) conditioned on TXx days in

each (𝑇500, 𝑇𝑠) bin. Contours enclose the regions containing 99% (dotted orange) and 95% (dashed magenta) of

the probability density (data points weighted by the cosine of latitudes). The black dashed line denotes the upper

bound from Zhang and Boos (2023). A Gaussian filter is applied to smooth the plotted fields for clarity.
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b. Model-reanalysis discrepancies in surface–midtroposphere coupling201

1) TXx days in the 𝑇𝑠-𝑇500 phase space202

We now examine the model-reanalysis discrepancy in ΔTXx/Δ𝑇500 using Eq. (4). As a first step,210

we verify that the annual hottest days in ERA5 and models are constrained by the upper bound211
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defined in Eq. (A6). This upper bound depends primarily on physical constants but includes the212

prefactor 𝑧500/𝑇500 in the geopotential term (see Appendix), which could differ across models and213

between models and reanalysis. We find that this factor differs by less than 1% across models and214

ERA5, producing nearly identical upper bounds, and therefore use the ERA5 estimate of 𝑧500/𝑇500215

for plotting.216

Figure 3 shows that surface temperatures adjusted for orography (𝑇𝑠 + 𝑔

𝑐𝑝
𝑧𝑠) generally remain217

below the upper bound for TXx days, although some apparent violations occur in the CMIP6218

dataset, likely due to model-specific factors such as convective parameterization schemes which219

we do not analyze further. The near surface specific humidity (𝑞𝑠) at a height of 2 m increases220

largely with the difference between the actual 𝑇𝑠 + 𝑔

𝑐𝑝
𝑧𝑠 and the upper bound throughout the full221

range of 𝑇500 values, consistent with Eq. (A5), in which 𝑇𝑠 and 𝑞𝑠 act as compensatory terms on222

the left side. At lower 𝑇𝑠, the isolines of 𝑞𝑠 no longer run parallel to the upper bound (Figure 3),223

but instead reflect the Clausius–Clapeyron relationship that the capacity of the near-surface air to224

hold moisture decreases at cooler temperatures.225

We then examine the temporal shift of the joint distribution of 𝑇𝑠 and 𝑇500 in time under231

anthropogenic forcing by dividing each dataset into four consecutive chunks in time. In ERA5,232

the shift in TXx is almost parallel to the upper bound (red line in Figure 4a), which implies that233

the first term on the right-hand side of Eq. (4), d𝑇𝑏 (𝑇500)/d𝑇500, dominates over the second term,234

𝐿𝑣/𝑐𝑝 ·Δ𝑞𝑠/Δ𝑇500. This is consistent with the findings of Figure 4 in Zhang and Boos (2023)235

showing that both the upper bound and the actual TXx have changed by similar magnitudes, even236

at the 0.25◦ grid-point scale. CMIP6 models collectively show a more pronounced downward237

deviation from the upper bound (Figure 4b-d) not only in the multi-model mean (slopes of thick red238

lines) but also for individual members (slopes of thin red lines). If Eq. (4) holds, this downward239

departure from the upper bound suggests that the TXx warming of most CMIP6 models might be240

accompanied by stronger increases in the specific humidity of the near surface air than in ERA5,241

thus reducing surface warming per degree of𝑇500 warming, which we will next verify by examining242

the surface specific humidity trends on the annual hottest days.243
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Fig. 4. Shift of TXx days in the 𝑇𝑠 −𝑇500 space for (a) ERA5, (b) Historical, (c) AMIP, and (d) SSP3-7.0.

Each contour encloses 95% of data (weighted by area) in each joint distribution. Colored dots are the centroids

of each distribution, reflecting the shift of the distribution with warming. Thick red lines are linear fits of the

multi-model centroids highlighting the shift and thin red lines are the same but for individual models. Dotted

lines are parallel to the upper bound and go through the centroid of the initial distribution.
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2) Moistening vs. warming compensation248

To test the above hypothesis, we directly examine the relationship between ΔTXx/Δ𝑇500 and249

𝐿𝑣Δ𝑞𝑠/(𝑐𝑝Δ𝑇500), where 𝑞𝑠 is the spatial average of 𝑞𝑠 on the annual hottest days. According to250
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Fig. 5. Compensating relationship between surface warming and moistening on the annual hottest days.

Scatterplot of ΔTXx/Δ𝑇500 versus 𝐿𝑣Δ𝑞𝑠/(𝑐𝑝Δ𝑇500) from CMIP6 model simulations and ERA5. 𝑇500 and 𝑞𝑠

are averages over land within 35◦N-70◦N on the annual hottest days, then the ratios are computed following the

procedure in Section 2c.
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Eq. (4), these two terms should sum to d𝑇𝑏/d𝑇500, the slope of the upper bound. This expectation251

is partially supported by a negative correlation between the two terms among CMIP6 members,252

regardless of experiment (Figure 5). The ERA5 data point lies near the low-moistening, high-253

warming end of the model cluster, which helps explain the higher ΔTXx/Δ𝑇500 diagnosed in254

ERA5 compared to CMIP6 models (Figure 3) and equivalently the steeper slopes in Figure 4.255

Among the 30 model members examined for three experiments in Figure 5, all produce stronger256

𝐿𝑣Δ𝑞𝑠/(𝑐𝑝Δ𝑇500) than ERA5. These 𝑞𝑠 trend patterns are broadly consistent with previous findings257

14



(e.g., Dunn et al. 2017; Douville and Plazzotta 2017; Simpson et al. 2024) that observations tend258

to show weaker increases in 𝑞𝑠 than the model mean, particularly over arid regions such as the259

southwestern United States (Simpson et al. 2024), and over midlatitude land during summer260

(Douville and Plazzotta 2017). Our results suggest that the model–reanalysis discrepancies in261

humidity trends may contribute to differences in simulated and observed extreme temperature262

responses.263

Eq. (4) motivates fitting a linear relationship with slope −1 to the CMIP6 and ERA5 data points,264

because ΔTXx/Δ𝑇500 can be interpreted as the dependent variable, d𝑇𝑏/d𝑇500 the intercept, and265

𝐿𝑣Δ𝑞𝑠/(𝑐𝑝Δ𝑇500) the independent variable. Fitting such a linear relationship with fixed slope −1266

minimizing the mean squared errors results in the following formula for the estimated intercept:267

𝑎 =
1
𝑁

∑︁
𝑖

(𝑦𝑖 + 𝑥𝑖), (8)

where 𝑥𝑖 and 𝑦𝑖 are the 𝐿𝑣/𝑐𝑝 ·Δ𝑞𝑠/Δ𝑇500 and ΔTXx/Δ𝑇500, respectively. The intercept 𝑎 is268

estimated to be 2.3, which is broadly consistent with theoretical expectations for the sensitivity269

of the upper bound to 𝑇500, though it aligns more closely with the warmer 𝑇500 values seen in270

later decades of the SSP3-7.0 scenario (for the current climate the slope is around 1.9). This271

suggests that the effective upper-bound slope in models may be steeper than predicted by theory.272

In Figure 3b–d, the envelope formed by the hottest simulated days, which appears as the uppermost273

boundary of the 𝑇𝑠–𝑇500 scatter, tilts more steeply than the theoretical line and also indicates a274

higher effective slope in the models. Possible explanations to this higher slope include enhanced275

entrainment associated with lower-tropospheric drying (Duan et al. 2024) and warming-related276

changes in convective available potential energy (CAPE) (Singh et al. 2017; Chen et al. 2020; Li277

and Tamarin-Brodsky 2025).278

This anticorrelation is also evident at the grid-point level across model experiments, as shown284

in Figure 6, which shows the correlation coefficient between ΔTXx/Δ𝑇500 and 𝐿𝑣Δ𝑞𝑠/𝑐𝑝Δ𝑇500285

across CMIP6 models. The widespread negative correlation over most land areas indicates that286

stronger near-surface moistening is associated with weaker TXx warming, consistent with Eq. (4).287

This anticorrelation is particularly strong over northern midlatitude land, including Europe, North288

America, and parts of Asia. Correlations are weaker or even positive in dry subtropical regions and289
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283

semi-arid tropical regions like the Sahel. Although the signal-to-noise ratio is lower at regional290

scales and the number of ensemble members is too small to support robust linear fits like that291

in Figure 5, the spatial pattern of the correlation still confirms the broader conclusion that lower292

warming of TXx in models is linked to excessive trends in near-surface humidity over the Northern293

Hemispheric midlatitude in those models. The physical origin of 𝑞𝑠 trends on the annual hottest294

days, however, is difficult to determine and lies beyond the scope of this study. Future work is295

needed to examine potential contributing factors, such as evapotranspiration, precipitation, and296

vertical and horizontal moisture advection.297

c. Midtropospheric amplification and the potential role of aerosols298

The previous section shows that different experiments produce a similar range of ΔTXx/Δ𝑇500299

values in CMIP6, despite being underestimated relative to ERA5. Here, we focus on the second300
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305

306

factor on the right-hand side of Eq. (5), Δ𝑇500/ΔGMST. As shown in Section 3a and Figure 2, this301

term explains much of the experiment dependence of in ΔTXx/ΔGMST.302

We first ask whether the spread in Δ𝑇500/ΔGMST among experiments is restricted to the annual307

hottest days or reflects a general pattern, and the results indicate the latter. When using the annual308

mean or the June-July-August mean 𝑇500 to compute Δ𝑇500/ΔGMST, AMIP still produces the309

highest ratio, followed by Historical and SSP3-7.0 (Figure 7). This consistency suggests that the310

divergent behavior is a general feature of midtropospheric warming, rather than a special case on311

the hottest days, with summer conditions providing the closest match to the hottest-day sensitivity.312
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The experiment-dependent behavior of Δ𝑇500/ΔGMST suggests that differences in the forcing313

agents matter. Both AMIP and Historical experiments are influenced by substantial reductions314

in aerosol emissions in the NH mid-latitudes over recent decades, while SSP3-7.0 is dominated315

by greenhouse gas increases and weaker changes in aerosol forcing over this region. This raises316

the hypothesis that the pronounced aerosol reductions in AMIP and Historical are at least partly317

responsible for their higher Δ𝑇500/ΔGMST values. To test this, we apply the same analysis to318

the historical simulation with greenhouse gas forcing only (Hist-GHG) and find that the resulting319

Δ𝑇500/ΔGMST is reduced relative to Historical and comes close to that of SSP3-7.0. The idealized320

1% per year CO2 increase experiment (1pctCO2), another experiment that does not include aerosol321

forcing and therefore exhibits no changes in aerosol forcing, also yields similar Δ𝑇500/ΔGMST322

to SSP3-7.0 (Figure 7). These results support the interpretation that the rapid decline in aerosol323

forcing over the NH mid-latitudes is a primary driver of the elevated Δ𝑇500/ΔGMST values in324

AMIP and Historical relative to SSP3-7.0. The higher Δ𝑇500/ΔGMST in AMIP compared to325

Historical likely comes from sea surface temperature patterns.326

The higher Δ𝑇500/ΔGMST in global climate models is qualitatively consistent with prior work327

finding a faster warming trend in the free troposphere in the models than derived from satellite328

observations (Santer et al. 2017a), which is most pronounced in the tropics but persists into329

near-global averages (Santer et al. 2017b).330

d. Extending the framework beyond annual hottest days331

The preceding analysis focuses on the annual hottest days (TXx). Here, we examine whether the341

same physical mechanisms also govern temperature trends across a broader range of hot summer342

days. We show linear trends in surface temperature (𝑇𝑠) and other relevant variables as a function343

of percentile thresholds that progressively include more days—from the single hottest day (1.1%)344

to the full June–July–August average (100%) (Figure 8).345

The warming trend of average summer days (June–July–August mean) is comparable to that of346

the hottest days in both ERA5 (Fig. 8a) and the CMIP6 multi-model mean (Fig. 8b). This finding is347

consistent with previous observations that the most extreme summer temperatures have not warmed348

substantially faster than the seasonal average (McKinnon et al. 2024).349
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Fig. 8. (a) Linear trends in surface temperature (𝑇𝑠), scaled near-surface specific humidity (𝐿𝑣𝑞𝑠/𝑐𝑝), their sum

(𝑇𝑠 + 𝐿𝑣𝑞𝑠/𝑐𝑝), and the upper-bound temperature (𝑇𝑏 (𝑇500)), computed from ERA5 reanalysis over 1979–2023

for Northern Hemisphere midlatitude land (35◦–70◦N). Trends are calculated separately for subsets of summer

(JJA) days, ranging from the hottest extremes (1.1%) to the full summer mean (100%). Shaded areas represent

the standard error of the linear regression slope. (b) Same as (a) but for the CMIP6 Historical experiment.

Shaded areas represent the standard error of the intermodel spread of the trends, rather than the standard error

of the regression slopes. (c) Climatologies of moist static energy (MSE) at 2-m level (MSE𝑠) and saturation

MSE at 500-hPa level (MSE∗
500) across percentiles of air temperature at 2 m in ERA5. (d) Same as (c) but for

multi-model mean of the CMIP6 Historical experiment.
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We then examine the trends in near-surface moist static energy (MSE𝑠), specific humidity (𝑞𝑠),350

and𝑇500 across percentiles. All these trends are relatively insensitive to percentile in both ERA5 and351

CMIP6. The key difference between the datasets is that the MSE𝑠 trend in ERA5 is predominantly352

driven by 𝑇𝑠, whereas in CMIP6, 𝑇𝑠 and 𝑞𝑠 contribute roughly equally.353

Near-convective neutrality implies that MSE𝑠 and MSE∗
500 should be approximately equal. Using354

daily averaged fields from CMIP6, we find that models reproduce the ERA5 climatology of these355
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quantities: on the annual hottest days, MSE𝑠 and MSE∗
500 are nearly equal, and their difference356

increases to ∼ 5 Jg−1 for the summer mean. Analysis of daily maxima in ERA5 shows a similar357

pattern, with MSE𝑠 exceeding MSE∗
500 by about 5 Jg−1 on the hottest days and nearly matching it358

for the summer mean. Overall, the MSE differences (MSE𝑠-MSE∗
500) remain within about ±5 Jg−1,359

indicating that both the hottest days and mean summer days remain close to convective neutrality.360

These results suggest that the convective upper-bound framework can be extended beyond annual361

extremes to help diagnose and interpret trends in summer mean temperatures. This may help362

explain the observed lack of amplification in extreme temperatures relative to the seasonal average363

(McKinnon et al. 2024).364

e. Spatial patterns and regional signals365

We next examine the spatial patterns ofΔTXx/ΔGMST and assess the potential of this framework366

for interpreting regional trends. Both HadEX3 and ERA5 exhibit strongly nonuniform sensitivities367

over the past few decades, with the most notable signals emerging over Europe and North America368

(Figure 9a,b). Over Europe, TXx has increased faster than over other regions, consistent with prior369

findings (Vautard et al. 2023). In contrast, parts of North America show a negative trend in TXx,370

with the cooling signal more widespread in HadEX3 than in ERA5. This “warming hole” in TXx371

could be linked to irrigation-related effects (Thiery et al. 2020) and circulation changes (Singh372

et al. 2023) over that region. In the following, we focus on these two regions.373

The near-zero observed trend of TXx (Figure 10a) and the sensitivity ΔTXx/ΔGMST (Figure380

10b) over parts of North America lie outside the model ensemble in which all members predict381

positive trends (this is true for the central estimates, although some of the standard errors overlap).382

Decomposition reveals that the term ΔTXx/Δ𝑇500 in CMIP6 models is larger than in ERA5383

(Figure 11a), contributing to their more positive ΔTXx/ΔGMST (there is less disagreement when384

the ERA5 trend is extended through 2023, but this goes beyond the end date of the Historical and385

AMIP runs). This is consistent with the fact that the models simulate insufficient increase in 𝑞𝑠386

during hot days per degree of 𝑇500 warming (Figure 11b). This discrepancy may reflect enhanced387

irrigation and soil moisture storage of that region over recent decades and these processes may388

not be well represented in CMIP6 simulations. The expected anti-correlation between the TXx389
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warming term and the surface air moistening term holds; the slope is shallower than the -1 predicted390

by Equation (4), but a fair amount of scatter exists.391

European TXx has been warming at a rate of around 4 K with each Kelvin of global mean392

surface warming according to both HadEX3 and ERA5 (Figure 10 c), which is above most models393

in the Historical experiment but similar to the average AMIP ensemble. The absolute TXx trends394
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over this region fall within the model spread of both AMIP and Historical experiments (Figure395

10d). Decomposition of the sensitivity ΔTXx/ΔGMST shows that ERA5 exhibits higher values of396

ΔTXx/Δ𝑇500 than CMIP6 multi-model means, while the Δ𝑇500/ΔGMST term remains relatively397

consistent across ERA5 and the Historical ensemble (Figure 11c). The lower ΔTXx/ΔGMST398

seen in the Historical simulations is therefore primarily driven by a muted ΔTXx/Δ𝑇500 response399

which is mechanistically linked to a stronger increase in surface air specific humidity 𝑞𝑠 per unit400

𝑇500 warming on hot days (Figure 11d). The same anti-correlation between ΔTXx/Δ𝑇500 and401

𝐿𝑣/𝑐𝑝 ·Δ𝑞𝑠/Δ𝑇500 observed in the midlatitude land mean (Figure 2) also holds when the analysis402

is restricted to Europe (Figure 11d).403

These two regional cases illustrate contrasting directions of model–observation disagreement.404

In both, trends in 𝐿𝑣/𝑐𝑝 ·Δ𝑞𝑠/Δ𝑇500 on the hottest days emerge as a key factor shaping differences405

in ΔTXx/Δ𝑇500. This result thus echoes previous studies that emphasize the importance of406

land–atmosphere feedbacks and soil moisture control on European heat extremes (e.g., Vogel407

et al. 2017), as well as the influence of irrigation on temperature extremes over the US Midwest408

(Nocco et al. 2019).409

4. Summary and Conclusions416

This study presents a physics-based framework for diagnosing hot temperature trends over mid-417

latitude land. Building on the upper bound theory, we formulate a decomposition that separates418

the trends of the annual hottest temperatures (TXx) into two components: the sensitivity of TXx to419

midtropospheric warming (ΔTXx/Δ𝑇500) and the amplification of midtropospheric warming rela-420

tive to global mean surface temperature (Δ𝑇500/ΔGMST). This framework enables interpretation421

of modeled TXx trends in terms of free-tropospheric dynamics and local-scale land-atmosphere422

coupling, and facilitates comparison across models, experiments, and observations.423

A key finding is that ERA5 estimates of ΔTXx/Δ𝑇500 lie at the upper end of the CMIP6 model424

ensemble distribution examined, which coexists with excessive moistening in models on the annual425

hottest days. This factor, ΔTXx/Δ𝑇500, quantifies the shift of annual hottest days in the 𝑇𝑠 −𝑇500426

phase space. While ΔTXx/Δ𝑇500 remains relatively consistent across CMIP6 experiments for427

average annual hottest days over land between 35◦N and 70◦N, the ERA5 value exceeds nearly all428

30 individual model members across AMIP, Historical, and SSP3-7.0 ensembles (Figures 2, 4),429

22



AMIP
(1979 2014)

Historical
(1979 2014)

SSP3-7.0
(2015-2100)

ERA5
(1979 2014)

ERA5
(1979 2023)

HadEX3
(1979-2014)

2

0

2

4

6

8

TX
x 

/ 
GM

ST
 (K

/K
)

North Americaa

AMIP
(1979 2014)

Historical
(1979 2014)

ERA5
(1979 2014)

ERA5
(1979 2023)

HadEX3
(1979-2014)

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

TX
x 

Tr
en

d 
(K

/d
ec

ad
e)

North Americab

AMIP
(1979 2014)

Historical
(1979 2014)

SSP3-7.0
(2015-2100)

ERA5
(1979 2014)

ERA5
(1979 2023)

HadEX3
(1979-2014)

2

0

2

4

6

8

TX
x 

/ 
GM

ST
 (K

/K
)

Europec

AMIP
(1979 2014)

Historical
(1979 2014)

ERA5
(1979 2014)

ERA5
(1979 2023)

HadEX3
(1979-2014)

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

TX
x 

Tr
en

d 
(K

/d
ec

ad
e)

Europed
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411

412

although the standard error of the ERA5 estimate does encompass most models. Across models430

and ERA5, ΔTXx/Δ𝑇500 is negatively correlated with 𝐿𝑣Δ𝑞𝑠/(𝑐𝑝Δ𝑇500) (Figure 5), consistent431

with the thermodynamic constraint imposed by moist convective neutrality that stronger near-432

surface moistening reduces the allowable surface warming under the same moist static stability.433

Further research is warranted on the causes of excessive near-surface moistening during midlatitude434

summers in CMIP6 models.435

The diagnosis of the warming–moistening relation for regions also reveals useful information.436

Parts of North America and Europe are known for exhibiting TXx trends that diverge from the437
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broader midlatitude land patterns, in opposite directions (Figure 9). The anticorrelation between438

ΔTXx/Δ𝑇500 and 𝐿𝑣Δ𝑞𝑠/(𝑐𝑝Δ𝑇500) for these smaller regions indicates that Eq. (4) remains a439

useful constraint at regional scales. ERA5 lying at the high-warming, low-moistening end of the440

model distribution for Europe, and at the low-warming, high-moistening end for North America441

(Figure 11b,d) suggests that land-surface processes contribute to the anomalous TXx trends in442

these two regions.443

Δ𝑇500/ΔGMST varies strongly across experiments and explains most of the experiment depen-444

dence of ΔTXx/ΔGMST. This variation is potentially linked to the changes in aerosol forcing. Ex-445
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periments with large aerosol reductions (e.g., AMIP, Historical) show exaggerated Δ𝑇500/ΔGMST,446

while greenhouse gas–dominated experiments such as SSP3-7.0 show moderate Δ𝑇500/ΔGMST.447

Other factors such as SST warming patterns and arctic amplification could also contribute, but are448

not investigated here.449

We further show that this diagnostic framework based on near-convective neutrality applies450

similarly well to the annual hottest days as to the June-July-August mean. This is broadly consistent451

with prior findings that midlatitude land regions in summer exhibit behaviors considered typical452

of the tropics, including the near-moist adiabatic vertical temperature profiles and a net divergence453

of moist static energy (Korty and Schneider 2007; Miyawaki et al. 2022).454

Finally, the decomposition framework and the anti-correlation between warming and moistening455

on the hottest days shown in Figure 5 may serve as a basis of emergent constraints on future456

TXx change. Extensions to other climate zones, variables, and heat stress metrics could also be457

explored in future work. Although our analysis is primarily based on ERA5, the close agreement458

between ERA5 TXx trends and observational datasets, as well as the consistency of ERA5 mid-459

tropospheric temperatures with satellite and radiosonde estimates (Zhang and Boos 2023), supports460

the credibility of the results. Future work incorporating more regional observations will help further461

evaluate the robustness of these findings.462

Acknowledgments. This research used resources of the National Energy Research Scientific Com-463

puting Center (NERSC), also supported by the Office of Science of the U.S. Department of Energy,464

under Contract No. DE-AC02-05CH11231. We acknowledge the World Climate Research Pro-465

gramme, which, through its Working Group on Coupled Modelling, coordinated and promoted466

CMIP6. We thank the climate modeling groups for producing and making available their model467

output, the Earth System Grid Federation (ESGF) for archiving the data and providing access, and468

the multiple funding agencies who support CMIP6 and ESGF.469

Data availability statement. The ERA5 hourly data on pressure levels and single levels from470

1979 to present are downloaded from the Copernicus Climate Change Service Climate Data Store471

(https://cds.climate.copernicus.eu). The Hadley Centre Sea Ice and Sea Surface Tem-472

perature data set (HadISST) is downloaded from https://www.metoffice.gov.uk/hadobs/473

hadisst/. The CMIP6 model output data are downloaded from the Lawrence Livermore National474

Laboratory portal (https://aims2.llnl.gov/search/cmip6/).475

25



APPENDIX476

Derivation of the diagnostic framework477

Expanding Eq. (2) using the definition of MSE in Eq. (3) leads to478

𝑐𝑝𝑇𝑠 + 𝐿𝑣𝑞𝑠 +𝑔𝑧𝑠 ≈ 𝑐𝑝𝑇500 + 𝐿𝑣𝑞sat(𝑇500) +𝑔𝑧500, (A1)

where the approximate equality holds when all terms are evaluated on the annual hottest days. 𝑇500,479

𝑞sat(𝑇500), and 𝑧500 represent the temperature, saturation specific humidity, and geopotential height480

at the 500-hPa pressure level, respectively.481

The saturation specific humidity 𝑞sat is computed from the saturation vapor pressure and ambient482

pressure using the following expression:483

𝑞sat(𝑇, 𝑝) =
𝜖 𝑒sat(𝑇)

𝑝− (1− 𝜖) 𝑒sat(𝑇)
, (A2)

where 𝜖 = 𝑅𝑑/𝑅𝑣 is the ratio of the gas constants for dry air and water vapor, and 𝑝 is the ambient484

pressure. The saturation vapor pressure 𝑒sat(𝑇) is evaluated using the Clausius–Clapeyron relation485

in the form of the Tetens approximation:486

𝑒sat(𝑇) = 𝑎1 exp
(
𝑎2(𝑇 −𝑇0)
𝑇 − 𝑎3

)
, (A3)

where 𝑎1 = 611.21Pa, 𝑎2 = 17.502, 𝑎3 = 32.19K, and 𝑇0 = 273.15K.487

To further simplify Eq. (A1), the approximation for 𝑧500 from Zhang and Boos (2023) is adopted,488

assuming a linear relationship between 𝑧500 and 𝑇500,489

𝑧500 ≈
𝑧500

𝑇500
𝑇500, (A4)

where 𝑧500 and 𝑇500 are June-July-August climatological geopotential height and temperature at490

500 hPa, taking the values of 5682 m and 258.8 K, respectively. Substituting this approximation491

into Eq. (A1) gives492

𝑐𝑝𝑇𝑠 +𝑔𝑧𝑠 + 𝐿𝑣𝑞𝑠 ≈ 𝑐𝑝𝑇500 + 𝐿𝑣𝑞sat(𝑇500) +
𝑔𝑧500

𝑇500
𝑇500 = 𝑐𝑝𝑇𝑏 (𝑇500). (A5)
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𝑇𝑏 is the same as 𝑇𝑠,max in Zhang and Boos (2023) (switched to avoid confusion with the annual493

maximum temperature here) and is a function of 𝑇500 alone:494

𝑇𝑏 (𝑇500) = 𝑇500 +
𝐿𝑣

𝑐𝑝
𝑞sat(𝑇500) +

𝑔𝑧500

𝑐𝑝𝑇500
𝑇500. (A6)

Perturbing Eq. (2) with respect to a reference climate thus gives495

𝑐𝑝Δ𝑇𝑠 + 𝐿𝑣Δ𝑞𝑠 ≈ 𝑐𝑝
d𝑇𝑏 (𝑇500)

d𝑇500
Δ𝑇500. (A7)

Dividing Eq. (A7) by 𝑐𝑝Δ𝑇500 and replacing 𝑇𝑠 with TXx gives Eq. (4).496
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