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Abstract Humid heatwaves, characterized by high temperature and humidity combinations, challenge
tropical societies. Extreme wet‐bulb temperatures (TW) over tropical land are coupled to the warmest sea
surface temperatures by atmospheric convection and wave dynamics. Here, we harness this coupling for
seasonal forecasts of the annual maximum of daily maximum TW (TWmax). We develop a multiple linear
regression model that explains 80% of variance in tropical mean TWmax and significant regional TWmax

variances. The model considers warming trends and El Niño and Southern Oscillation indices. Looking ahead,
the strong‐to‐very‐strong El Niño at the end of 2023, with an Oceanic Niño Index of ∼2.0, suggests a 2024
tropical land mean TWmax of 26.2°C (25.9–26.4°C), and a 68% chance (24%–94%) of breaking existing records.
This method also predicts regional TWmax in specific areas.

Plain Language Summary The heat and humidity in the tropics can be particularly challenging for
people to stay comfortable and healthy. This combination of heat and moisture is described using a measure
called the wet‐bulb temperature (TW). We found that these extremely humid and hot conditions on land can be
predicted about 5 months in advance using a physics‐based statistical model. The forecast is possible because
the peak of El Niño comes before the peak in the warmest sea surface temperatures, which affects the maximum
TW on land. This prediction can help tropical societies to better prepare for extreme heat.

1. Introduction
The tropics, characterized by high temperatures and humidities, face heightened risks from heat‐related impacts
(Parkes et al., 2022; Raymond et al., 2020, 2021; Sherwood & Huber, 2010). This vulnerability is exacerbated by
the consistent warming trend, leading to more frequent and intense heat events. Superimposed on the warming
trend is the El Niño‐Southern Oscillation (ENSO). El Niño events, typified by warmer central and eastern equa-
torial Pacific Ocean temperatures, trigger shifts in atmospheric circulation that modify global temperature and
precipitation patterns (Yulaeva&Wallace, 1994). These events often result inmore frequent and intense heatwaves
in many regions, including the tropics (Arblaster & Alexander, 2012; Revadekar et al., 2009; Thirumalai
et al., 2017). In contrast, La Niña events, marked by cooler Pacific Ocean temperatures, tend to bring cooler and
wetter conditions. In light of ongoing global warming, an El Niño event superimposed on the current warming
could result in unparalleled hot weather, underscoring the need for further investigation and preparedness.

The physical mechanism underlying pan‐tropical land warming during El Niño years is the free‐tropospheric
heating that arises from deep convection over anomalously warm sea surface temperatures (SSTs). This heat-
ing causes atmospheric columns over remote land to adjust to a warmer state in response to the elevated free
troposphere temperatures (Brown & Bretherton, 1997; Chiang & Sobel, 2002). Notably, this free‐tropospheric
warming occurs a few months after peak El Niños (Chiang & Sobel, 2002; Pan & Oort, 1983; Sobel
et al., 2002), as the SSTs in convective regions (the warmer portions of tropical SSTs) take a few months to warm
following peak El Niño events as a result of the interactions within the coupled air‐sea system (Fueglistaler, 2019;
Hogikyan et al., 2022; Klein et al., 1999; Su et al., 2005; Xie et al., 2009).
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As recognition of humid heat's importance grows, the effects of global warming and ENSO on extreme humid
heat, in addition to extreme temperatures, are emerging as active areas of research. Anthropogenic warming is a
primary driver of tropical increases in wet‐bulb temperature (TW), a common measure of humid heat (Buzan &
Huber, 2020; Sherwood & Huber, 2010; Zhang et al., 2021). Zhang et al. (2021) shows that tropical TW is also
controlled by the mechanism described above, namely that extreme TW over tropical land is limited by the
near‐uniform free‐tropospheric temperature which is set by the warmest SSTs. According to Zhang
et al. (2021), extreme TW in the tropics is projected to rise by 1°C for every 1°C increase in tropical mean
warming. Concurrently, ENSO variability can significantly impact TW patterns over shorter timeframes
(Ivanovich et al., 2022; Rogers et al., 2021; Speizer et al., 2022). Research has highlighted anomalously high
tropical land mean TW associated with the 1997–1998 El Niño (Raymond et al., 2020; Zhang et al., 2021), as
well as the more frequent occurrence of regional extreme TW during El Niño years (Rogers et al., 2021;
Speizer et al., 2022).

In this study, we draw upon existing knowledge that (a) maximum wet‐bulb temperatures (TWmax) over land are
influenced by the warmest SSTs in the tropics, and (b) a lag of about 4 months occurs in the warming of the
warmest SSTs after a peak El Niño event. We aim to construct a predictive model for extreme TW that can
provide early warning of extreme TWmax levels several months in advance. We then explore the regional validity
of this model and focus on a few high‐TW zones where the model is effective. While earlier research has studied
the delayed effects of El Niño on the following summer in Asia, known as the “Indian Ocean capacitor effect”
(Xie et al., 2009), our focus extends to extreme TW in all tropical land areas. Our research aims to enhance
seasonal predictions of extreme TW in the tropics, offering more accurate climate risk assessments and enhancing
preparedness efforts in these regions.

2. Data and Methods
2.1. Wet‐Bulb Temperature

Wet‐bulb temperatures (TW) are calculated using the ERA5 hourly reanalysis product (Hersbach et al., 2020) by
solving the following equation:

cpTs + Lvqs = cpTW + Lvqsat(TW), (1)

where Ts and qs represent the 2‐m temperature and 2‐m specific humidity, respectively. Lv denotes the latent heat
of vapourization, and cp represents the specific heat capacity of air at constant pressure. In our computations, we
use cp as 1004.7090 J/kg/K and Lv as 2.5008 × 103 J/kg. Although neglecting the temperature dependence of cp
and Lv introduces a small error in TW, it is sufficient for our purposes.

Since the ERA5 data set does not directly provide the 2‐m specific humidity, we calculate it using the hourly 2‐m
dewpoint temperature (Td) and surface pressure (ps), considering the molecular mass ratio of water vapor and air
(ϵ) of 0.621,981. The specific humidity (qs) is determined as follows:

qs =
ϵesat (Td)

ps − (1 − ϵ)esat (Td)
, (2)

where esat represents the saturation vapor pressure calculated using the Clausius‐Clapeyron equation, specifically
the Teten's formula, consistent with the methodology of the European Center for Medium‐Range Weather
Forecasts (ECMWF) (ECMWF, 2014):

esat = a1e
a2

T− T0
T − a3 , (3)

with the parameter values for saturation over water: a1 = 611.21 Pa, a2 = 17.502, a3 = 32.19 K, and
T0 = 273.15 K.

To focus on extreme TW values, we consider the daily maximum TW and then determine the annual maximum,
denoting it as TWmax.
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2.2. ENSO Index

The strength of the El Nino‐Southern Oscillation (ENSO) phenomenon is assessed using the Oceanic Niño Index
(ONI), which serves as National Oceanic and Atmospheric Administration (NOAA)'s primary index for moni-
toring the oceanic component of ENSO. The ONI is calculated as the rolling 3‐month average temperature
anomaly, from the long‐term average, of the surface of the east‐central tropical Pacific near the International
Dateline in the Niño 3.4 region (5°N–5°S, 120°–170°W). This ONI data set is based on NOAA Extended
Reconstructed Sea Surface Temperature (ERSST) Version 5.

3. Results
3.1. ONI Leads TWmax by Months

To demonstrate that warm tropical SSTs control extreme TW over land through the mediation of the free
tropospheric temperature, we show the time series of these three variables in Figure 1a. All time series are
presented as running means of 6 months with the monthly climatology removed. The anomalies in the free‐
tropospheric temperature at the 500‐hPa level (T500) is divided by 1.4, because a 1‐K increase in SST would
result in about 1.4 K of increase in T500 following a moist adiabatic lapse rate. The tropical land‐average of
monthly maximum TW exhibits a notable long‐term warming trend of approximately 0.2 K per decade from 1979
to 2022, accompanied by significant interannual variability. The monthly average 500‐hPa temperature (T500)

and the top 25% of monthly mean SST (SST25%) show similar interannual variabilities and long term trends as
TW, with contemporaneous peaks. These findings support the notion put forward by Zhang et al. (2021) that the
warmest SSTs control the maximum TW over land, with the coupling occurring rapidly enough to render the
maximum TW and SST25% variations appear nearly simultaneous in monthly data.

To predict extreme TW over land, we turn our attention to the predictors for the warmest 25% of SSTs. ENSO
induces significant shifts in atmosphere‐ocean circulations, altering the energy budget of the ocean's mixed layer
and influencing the relatively warm SSTs that lie in regions of deep atmospheric convection. The interannual
variability in SST25% closely resembles that in the Oceanic Niño Index (ONI), which does not exhibit a long‐term
trend by design. Moreover, major El Niño events coincide with pronounced spikes in SST25% and TWmax

anomalies, with the latter two typically occurring with a lag of approximately 4 months. Notably, the warming of
TWmax during the developing phase of the 1991–1992 El Niño was interrupted by the aerosol cooling effect of the
Mt. Pinatubo eruption in June 1991, leading to a missed peak in TWmax despite rising ONI. Another significant
volcanic eruption, El Chichón in 1982, also coincided with an El Niño event. Although elevated TWmax values
still occurred, they were partially offset by volcanic cooling, and the peak TWmax lagged the ONI peak by
9 months. Excluding the volcanic eruptions, other major El Niño events consistently precede anomalous high
SST25% values and, consequently, extreme TWmax values. These findings suggest the potential to use the ONI to
statistically predict TWmax some months later, perhaps even in the following year.

3.2. Multiple Linear Regression Model of TWmax

We develop a multiple linear regression model to predict the annual maximum of daily maximum wet‐bulb
temperature (TWmax) using two independent variables: a year variable to account for the warming trend and
the Oceanic Niño index (ONI) to represent ENSO. The objective is to explain anomalies in TWmax as a linear
combination of a constantly rising baseline and the ONI from a specific month of the preceding year:

TWmax,t = β0 + β1t + β2ONIm,t− 1 + ϵt (4)

Initially, we examine whether this model can capture the tropical land average values of TWmax between 30°S and
30°N. Even though the exogenous variable is an annual maximum, the process of spatial averaging yields an error
term with a near‐Gaussian distribution, justifying the use of multiple linear regression analysis. We compute the
R2 values for different months (m) in the model using the tropical land average of TWmax from 1980 to 2022, with
the year t and ONI from 1979 to 2021 as the independent variables (Figure 1b). The highest R2 value of 0.764 is
obtained when using the ONI from all Novembers to predict the land‐mean TWmax in the following years.
However, considering the impact of major volcanic eruptions on TWmax, we exclude the years affected by these
eruptions to enhance the accuracy of the linear regression model. We exclude TWmax for the 2 years following the
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Mt. Pinatubo eruption (1992 and 1993) and the two years following the El Chichón eruption (1983 and 1984).
Consequently, we discard ONI values from 1982, 1983, 1991, and 1992. The performance of the regression
improves, with the highest R2 value of 0.803 achieved using December ONI from the preceding year. Notably, the
R2 values exhibit substantial increases from April to August, reaching a relatively high value of 0.735 in June.
This aligns with the spring predictability barrier (e.g., Webster and Yang (1992)) and suggests that a skillful
prediction for TWmax in the subsequent year might be obtained as early as June of the current year.

For completeness we also show the R2 values using ONI for each month of the same year as the TWmax in
Figure 1b. The explained variance does not increase when using ONI of the same year as the occurrence of
TWmax. This is because TWmax over land is not constrained by the contemporaneous ONI but rather the warmest
SSTs which lag ONI by a few months.

Figure 1. El Nino‐Southern Oscillation variability leads tropical land TWmax by a few months. a, Monthly anomalies of
tropical (between 30°S and 30°N) land mean TWmax (red), the upper‐quartile‐mean sea surface temperature (blue) from
Hadley Center Sea Ice and SST data set (Rayner et al., 2003), and the average 500‐hPa temperature divided by the moist
adiabatic amplification factor 1.4 (cyan), as well as the Oceanic Niño Index (ONI) in gray. Timing of strong El Niños (ONI
>1.5) are marked with vertical dotted lines. b, R2 values of the multiple linear regression model specified in Equation 4 using
ONI from January to December of preceding years (solid) and contemporaneous years (dashed). The gray line shows the fit
using all 43 years between 1990 and 2022, while the magenta line shows the fit of 39 years to exclude major volcanic
eruptions.
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Figure 2 illustrates the multiple linear regression model in Equation 4 when m is December. There is negligible
multicollinearity between the two independent variables (Figure 2a), year (t) and ONI of the preceding December
(ONIDec,t− 1). Each independent variable alone explains slightly less than 40% of variance in the tropical mean
TWmax. Figure 2d shows the observed versus the model‐predicted TWmax with 80% of variance explained. The
performance of the model is roughly constant across all years and does not depend on strong signals frommajor El
Niños.

In the following, we progressively apply the model to zonal‐mean and grid‐point‐level TWmax. TW undergoes a
strong annual cycle mainly driven by local insolation, while the warmest quartile of SSTs (SST25% hereafter)
limits peak TW values across tropical locations with a comparatively smaller seasonal cycle; there is less than 1 K
difference between the warmest and the coldest months of a year for SST25%, whereas TW can vary by 10 K over
many locations. ENSO variability and an upward trend are present in SST25% throughout the year (Figure S7 in
Supporting Information S1), therefore the model is potentially effective for local TWmax regardless of the month
of occurrence. Given the performance of December ONI for the tropical mean TWmax (Figure 1b) and the zonal‐
mean TWmax over most latitudes (Figure S3 in Supporting Information S1), all regional regressions in the rest of
the paper are against December ONI with the four years affected by volcanism removed between 1980 and 2022,
resulting in 39 data points and two independent variables. Note that the ONI is a 3‐month running mean, therefore

Figure 2. Visualization of the multiple linear regression for 30°S–30°N land‐mean temperature (TWmax). a, Scatter plot of
independent variables—December ONI of preceding years (ONIDec,t− 1) and year (t). b, Scatter plot of 30°S–30°N land‐mean
TWmax and year (t). c, Scatter plot of 30°S–30°N land‐mean TWmax and ONIDec,t− 1. d, TWmax from ERA5 versus the
predicted TWmax by the regression model. Years following major volcanic eruptions are excluded from the fit and are plotted
separately in gray. Years after strong El Niños are highlighted. The gray dotted line indicates 1/1.
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December ONI values contain information from January of the following years; however, TWmax occurs in
January primarily for some land regions south of 15°S (Figure S5 in Supporting Information S1), and we later
demonstrate predictive skill of the model 3–7 months in advance for sample regions near the equator or in the
Northern subtropics.

3.3. Impact of Warming Trend and ENSO Variability on TWmax

To assess the relative contributions of warming and ENSO to explaining the variance in TWmax, we estimate the
standardized regression coefficients ( β̂

∗
) by carrying out the multiple linear regression on standardized variables,

with the standardization following x − x
sx

where x denotes the average and sx the standard deviation. The stan-
dardized regression coefficients provide the change in the dependent variable per one‐unit change in the inde-
pendent variable measured in standard deviations. β̂∗ would equal the correlation between the respective
independent variable and TWmax if the independent variables were uncorrelated. The 95% confidence intervals of
β̂∗ for the warming trend and ENSO variability are 0.65 ± 0.15 and 0.64 ± 0.15, indicating that both factors
contribute similarly to the variance of the tropical land mean TWmax (Figure 3a).

To examine the spatial distribution of these coefficients, we compute β̂∗ by regressing the standardized zonal land
mean TWmax (i.e., TWmax at each grid point zonally averaged over land only) against the same two standardized
independent variables.

Figure 3. Relative importance of constant warming and El Niño‐Southern Oscillation variability in explaining temperature
(TWmax) variability. a, Standardized regression coefficients ( β̂∗

) and the 95% confidence intervals for both independent
variables. b, Same as a but for zonal mean TWmax over land. c and d, Incremental R2 (ΔR2) for each independent variable,
estimated by removing each variable from the full regression, and the R2 of the full model (gray).
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Figure 3b illustrates the estimated β* as a function of latitude. Over most latitudes in the tropics, the 95% con-
fidence intervals of β̂∗

1 (warming) and β̂∗
2 (ENSO) strongly overlap, suggesting a similar contribution at each

latitude. However, in the southern subtropics, the magnitude of β̂∗ values for both variables declines, and the 95%
confidence interval encompasses 0 south of 20°S, indicating that the regression model is not useful in these
latitudes. Notably, warming exerts a stronger influence on the northern subtropics compared to ENSO.

The implications of a one‐standard‐deviation change may differ when the independent variables follow different
distributions, as is the case here with the uniformly distributed t variable and the approximately normally
distributed ONI. To provide further evidence and a complementary perspective, we employ an alternative
approach by calculating the increment in R2 (ΔR2) for each variable:

ΔR2
i = R2

full − R2
Reduced,i, (5)

where R2
full represents the R

2 value of the full model (Equation 4), and R2
Reduced,i corresponds to the R

2 value when
the ith independent variable is removed from the regression model. ΔR2

i can be loosely regarded as the contri-
bution of the ith variable to the full model. This method yields similar results (Figures 3c and 3d), with warming
contributing 0.428 and ENSO contributing 0.413 for the tropical mean TWmax. The latitudinal patterns of the
relative magnitudes of ΔR2 values closely resemble those of β̂∗. Furthermore, the R2 value of the full model
indicates that the model performs best in the deep tropics, consistent with empirical findings that support the
validity of the convective quasi‐equilibrium and weak‐temperature‐gradient assumptions in that latitudinal range
(Chiang & Lintner, 2005; Held & Hou, 1980; Zhang & Fueglistaler, 2020).

3.4. Regional Regression

When evaluating the model's performance for gridbox‐level annual maxima, the assumption of a Gaussian error
term in Equation 4 becomes less appropriate. In this context, we assume a generalized extreme value (GEV)
distribution for the error term and determine the parameters through maximum likelihood estimation (Text S1 in
Supporting Information S1).

The model's performance exhibits a spatial pattern consistent with the zonal‐mean analysis discussed above, with
its lowest RMSE values in the deep tropics and an increase toward higher latitudes (Figure 4a).

The β̂ values for both warming (Figure 4b) and ENSO (Figure 4c) are comparable in magnitude when multiplied
by the standard deviations of the respective independent variable, implying their similar impacts on TWmax

variability across different locations. Contrary to expectations that TWmax in all tropical land is constrained by the
warmest SSTs irrespective of place, the coefficient for warming (β̂1 ; Figure 4b) exhibits notable spatial variations.
In contrast, the ENSO coefficient (β̂2 ; Figure 4c) is relatively uniform, with El Niños leading to higher TWmax in
the following years across most regions. This suggests that, despite El Niño's inherent spatial characteristics, its
occurrence induces a relatively uniform response in the following year's continental TWmax.

There are two potential causes of the spatial pattern in the coefficient of warming ( β̂1) : the influence of local land
surface conditions, and the uneven response of free‐tropospheric temperatures to localized convective heating
(Gill, 1980; Matsuno, 1966). Further analysis suggests that the former is more likely (Text S2 in Supporting
Information S1), as evidenced by the fact that the areas of negative β̂1 coincide with regions of strongly negative
trends in the annual‐mean 2‐m specific humidity (qs; Figure S1b in Supporting Information S1). Such drying
trends could stem from land use change, a process not explored in this study. A drier land surface deepens the
planetary boundary layer, distributing surface heat fluxes within a deeper layer and enhancing entrainment of dry
free tropospheric air; both of these processes lead to lower boundary layer moist static energy and surface TW
(Kong & Huber, 2023; Pal & Eltahir, 2001).

The above analyses illustrate the spatial heterogeneity in the relationships of TWmax with warming and ENSO.
While it is reasonably true that tropical TWmax increases over land are uniformly limited by the warmest sea
surface temperatures (Zhang et al., 2021), the regional disparities highlight the limitation of this assumption.
These results emphasize the importance of conducting localized assessments, which we do next.
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We have chosen four regions (marked as red boxes in Figure 4a) to assess how the model in Equation 4 predicts
regional‐mean TWmax. The choice of these regions is not governed by any strict rule, but we generally pick
regions that exhibit relatively high values in climatological TWmax (Figure S4a in Supporting Information S1) and
population density (Figure S4b in Supporting Information S1), and relatively low values in RMSE (Figure 4a).
Spatial averaging produces error terms approximating Gaussian distributions, justifying the suitability of
applying the multiple linear regression analysis. The model's performance in these smaller regions is depicted in
Figures 5b–5d, while Figure 5a illustrates the same for the tropical land mean. The model effectively explains
TWmax variability at both regional and tropical mean scales. The contributions of warming and ENSO exhibit
regional variations, as evidenced by the range of ΔR2 values in Table 1. In Southeast Asia, for instance, the
variability of TWmax is predominantly influenced by the warming trend, with higher TWmax values occurring in
more recent years (Figure 5c). Conversely, the Sahel region exhibits stronger sensitivity to ENSO variability, with
1998 and 2016 having the highest TWmax (Figure 5b).

TWmax occur at different times of year in different regions. A general pattern emerges, with TWmax events
occurring during boreal summer (June‐August) north of 15°N, boreal winter (December–February) south of 15°S,
and boreal spring (March–May) and fall (September–November) between 15°S and 15°N (Figure S5a in Sup-
porting Information S1). For the four selected regions, TWmax typically occurs in April for Sahel, May for
Southeast Asia and Sumatra, and June to August for North India (Figure S5b in Supporting Information S1). The

Figure 4. Results of fitting the model in Equation 4 at each location assuming generalized extreme value distributions of the
error terms. a, R2, defined as the regression sum of squares divided by the total sum of squares. Red boxes outline regions of
interest further analyzed in Figure 5 b, Standardized regression coefficient of warming. c, Standardized regression coefficient
of El Niño‐Southern Oscillation variability.
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Figure 5. Example temperature (TWmax) forecast for 2024. a‐e, Performance of multiple linear regression for 30°S–30°N land mean and four regions marked in
Figure 4a. Color indicates the year of the data point. Two major El Niños‐1998 and 2016‐are highlighted. f‐j, Predicted TWmax, 2024 as a function of December Oceanic
Niño Index (ONI), 2023. Confidence intervals in red account for the standard error of the predicted mean. Prediction intervals in blue additionally take into account the
year‐to‐year variability around the predicted mean. k‐o, Estimated chance of TWmax setting new records in 2024 in the tropical mean and each region conditioned upon
the strength of El Niño by the end of 2023. ONI ranges of moderate (1.0 ≤ ONI < 1.5), strong (1.5 ≤ ONI < 2.0) and very strong (ONI ≥ 2.0) El Niño events are marked.

Table 1
Summary of Multiple Linear Regression Resultsa

Region 30°S–30°N mean Sahel Southeast Asia Sumatra North India

β̂1 (°C/year) 0.0125 ± 0.0029b 0.0121 ± 0.0037 0.0235 ± 0.0034 0.0184 ± 0.0038 0.0218 ± 0.0050

β̂2 (°C/unit ONI) 0.137 ± 0.032 0.171 ± 0.042 0.141 ± 0.038 0.152 ± 0.042 0.115 ± 0.056

β̂∗
1 (standardized β̂1) 0.65 0.55 0.84 0.73 0.78

β̂∗
2 (standardized β̂2) 0.64 0.70 0.45 0.55 0.37

ΔR2
1 0.428 0.300 0.700 0.538 0.607

ΔR2
1 0.413 0.483 0.203 0.298 0.135

R2 0.803 0.749 0.869 0.800 0.716

F‐statistic, P > F 73.36, 2.0e− 13 53.66, 1.6e− 11 119.3, 1.3e− 16 72.04, 2.6e− 13 45.50, 1.4e− 10

t, P > |t| for β̂1 8.844, 1.5e− 10 6.557, 1.3e− 07 13.859, 5,3e− 16 9.843, 9.5e− 12 8.783, 1.8e− 10

t, P > |t| for β̂2 8.686, 2.3e− 10 8.321, 6.6e− 10 7.465, 8.1e− 9 7.328, 1.2e− 8 4.134, 2.0e− 4

Root Mean squared error (RMSE; °C)c 0.103 0.134 0.124 0.136 0.182

Leave‐one‐out cross‐validation RMSE (°C) 0.113 (+9.45%d) 0.147 (+9.17%) 0.135 (+8.86%) 0.149 (+9.05%) 0.199 (+9.71%)

Walk‐forward validation RMSE (°C) 0.119 (+7.08%e) 0.138 (+20.1%) 0.156 (+17.6%) 0.171 (+18.8%) 0.194 (+17.6%)

Record‐setting probability (ONI = 1.5) 42% (11%‐78%f) 15% (1.8%–49%) 56% (15%–84%) 11% (0.5%–58%) 35% (7.7%–69%)

Record‐setting probability (ONI = 2.64) 90% (50%–99.5%) 66% (14%–95%) 92% (55%–99.5%) 51% (5.5%–95%) 63% (17%–94%)
aNumber of Observations: 39; Residuals degree of freedom: 36; Model degree of freedom: 3. b95% confidence interval. cMaximum likelihood estimate of MSE, not the
unbiasedMSE. dPercentage change compared to the regression model with all 39 data points. ePercentage change of RMSE of the last 19 data points. f95%BCa bootstrap
interval.
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multiple linear regression model thus demonstrates an average lead time of approximately 5 months for tropical
land areas and a range of three to 7 months for the four regions of interest.

3.5. Forecasting TWmax Months in Advance

Before making predictions with the multiple linear regression model, we assess its predictive skill using leave‐
one‐out cross‐validation and walk‐forward validation which is more suitable for time series data. This is
motivated by the possibility of overfitting, especially since our model was trained using the full data set. The
moderate increases in RMSE during cross‐validation (Table 1) suggest that the model is not seriously
overfitted and is suitable for making predictions with details provided in Text S3 and Figures S6 in Sup-
porting Information S1.

Our objective is to generate a forecast of TWmax for the upcoming year based on the December Oceanic Niño
Index (ONI) of the current year. Note that the ONI is a 3‐month running mean, with December ONI of the current
year technically containing information from January of the upcoming year, but nearly all land north of 15°S has
TWmax occurring in March or later of the upcoming year (Figure S5b in Supporting Information S1). Taking the
year 2024 as an example, the predicted mean depends on ONIDec,2023 following:

T̂Wmax,2024 = β̂0 + 2024β̂1 + β̂2ONIDec,2023. (6)

Figures 5e–5h presents the 95% confidence intervals of the predicted mean and the 95% prediction intervals of
TWmax,2024 as a function of ONIDec,2023 (Text S4 in Supporting Information S1). As expected, even in a neutral
ENSO state, the mean predicted TWmax,2024 values in all four regions (Figures 5f–5h) as well as the tropical mean
(Figure 5e) surpass the median of past records. This demonstrates the influence of the cumulative warming at the
present level on TWmax. A rough estimate of the impact of warming since 1980 on TWmax is the number of years
(44 years) multiplied by β̂1 , yielding 0.55 K for the tropical mean. The ONI value required to achieve a com-
parable effect can be estimated by dividing the warming‐induced increase in TWmax by β̂2 . Remarkably, an ONI
value of 4.0, representing a super El Niño of unprecedented magnitude, would be necessary to match the increase
in tropical mean TWmax caused by cumulative warming. Although this estimation is not rigorous, it provides an
estimate of the magnitude of the cumulative warming effect since 1980, equivalent to an exceptionally strong El
Niño.

Next, we estimate the probability of a new TWmax record being set in 2024, assuming knowledge of
ONIDec,2023. Rigorously estimating this probability is challenging, and our estimate is contingent upon certain
assumptions. We assume that the predicted TWmax at each xp = (1,2024,ONIDec,2023)T follows a Gaussian
distribution centering at the predicted mean given by Equation 6 with a standard deviation equaling the root
mean squared error (RMSE; we use the maximum likelihood estimate of RMSE rather than the unbiased es-
timate). For each ONIDec,2023 value, we then compute the area under this Gaussian distribution when the
predicted TWmax exceeds the highest record, resulting in the central estimates of the probability of a new
TWmax record being set (solid lines in Figures 5i–5l). The 95% confidence intervals for this probability, shown
as dotted lines in Figures 5i–5l, were derived using the bias‐corrected and accelerated (BCa) bootstrap method
(Text S5 in Supporting Information S1).

For the tropical mean TWmax, an Oceanic Niño Index (ONI) of 1.5 by the end of 2023 leads to a central estimate of
a 42% probability of surpassing the TWmax record in 2024 with the 95% confidence interval ranging from 11% to
78% (Figure 5k). In contrast, if an El Niño as intense as the 2015/2016 event (with an ONI of 2.64) occurs, the
central probability estimate increases to 90%, with the 95% confidence interval ranging from 50% to 99.5%
(Figure 5k). These probabilities as well as the width of the confidence intervals exhibit regional variability
(Table 1), with Southeast Asia emerging as a region with an elevated likelihood of experiencing record‐breaking
TWmax during a strong El Niño (Figures 5m and Table 1).

4. Summary and Discussion
This study establishes the potential for dynamically based predictions of the annual maximum of daily maximum
wet‐bulb temperatures (TWmax) across tropical land areas with an average lead time of about 5 months. This
predictability arises from two facts in tropical atmosphere‐ocean dynamics: (a) TWmax over tropical land is
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closely coupled to free tropospheric temperature through deep convection and tropical wave dynamics, and (b) the
free tropospheric temperature is determined by the warmest SSTs, which typically reach their peak around
5 months after the peak of an El Niño event.

By using the Oceanic Niño Index (ONI) as a predictor and accounting for the warming trend through a “year”
variable, our multiple linear regression model effectively explains a substantial portion—80%—of the variability
in tropical land mean TWmax. Although the model's performance varies across regions, it demonstrates promising
skill, especially in the deep tropics (Figures 3b–3d, Figure 4a). Both warming trends and ENSO have contributed
significantly to the variability in TWmax, and our analysis shows that the cumulative warming effect since 1980 is
comparable to that of an exceptionally strong El Niño.

We forecasted TWmax for the year 2024 assuming knowledge of the December ONI of 2023 and estimated the
probability of setting new TWmax records in 2024. The strength of an El Niño event significantly influences the
probability of breaking TWmax records. The tropical mean and regional variations in these probabilities are
detailed in Figures 5k–5o and Table 1.

Caution should be taken when applying this model to time periods or regions beyond those used in this study.
First, representing warming with the “year” vector assumes a constant long‐term rate of change in TWmax

over time, an assumption that should be modified when applied to periods of nonlinear anthropogenic
warming. Second, the spatial heterogeneity in the goodness of fit (Figure 4a) suggests other factors at play as
discussed in Text S2 in Supporting Information S1. Third, the timing of TWmax varies across different re-
gions. Thus, enhancing the model by incorporating additional information from various ONI months is a
logical step forward.

Although TW may not be the most precise metric for evaluating heat stress (Baldwin et al., 2023; Lu &
Romps, 2023), the methodology developed in this work has the potential to be adapted to temperature and Heat
Index, which are influenced by SST through similar dynamics (Byrne, 2021; Chiang & Sobel, 2002).

Finally, this study calls for increased efforts to enhance the accuracy of predictions of ENSO‐induced free‐
tropospheric temperature variations. Improved predictions for free‐tropospheric temperatures, such as T500,
could benefit projections of extreme heat stress across tropical continents, as illustrated by the close correlation
between the two in Figure 1a. Note that the predictive model proposed in this study does not rely on forecasting
future ENSO events; it leverages only the current ENSO state. This model's predictive skill originates from the
time lag between tropical tropospheric temperatures and ENSO variability. That said, advances in ENSO fore-
casting could further extend the lead times at which accurate TWmax predictions become feasible.

Data Availability Statement
The Oceanic Niño Index (ONI) is provided by National Oceanic and Atmospheric Administration's Climate
Prediction Center and is available here: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/enso-
stuff/ONI_v5.php. The ERA5 hourly data on pressure levels and single levels from 1979 to present are down-
loaded from the Copernicus Climate Change Service Climate Data Store (https://cds.climate.copernicus.eu). The
Hadley Center Sea Ice and Sea Surface Temperature data set (HadISST) is downloaded from https://www.
metoffice.gov.uk/hadobs/hadisst/.
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The generalized extreme value (GEV) distribution is represented by the probability

density function:
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In our model, the location parameter, µ, is defined as a linear combination of the year

(t) and the Oceanic Niño Index from the preceding December (ONIt−1):

µ = β0 + β1t+ β2ONIt−1 (2)

Thus, the log-likelihood function, given the data, can be expressed as:

L(β0, β1, β2, σ, ξ|TWmax,1, ...TWmax,n, t1, .., tn,ONI0, ...,ONIt−1)

=


−n lnσ − (1 + 1

ξ
)
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σ
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σ
)−

1
ξ if ξ ̸= 0

−n lnσ −
n∑

t=1

TWmax−β0−β1t−β2ONIt−1
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To obtain optimal parameter values, the negative log-likelihood (−L) is minimized using

the “minimize” function from Python’s “scipy” package. The estimated β̂ values derived

this way, as well as the Mean Squared Error (MSE), are quite similar to those from a

standard multiple linear regression (not shown).

Text S2. Spatial patterns of the regression coefficient with regard to warming

There are two potential causes of the spatial pattern in the coefficient of warming (β̂∗
1):

the uneven response of free-tropospheric temperatures to localized convective heating, and

the influence of local land surface conditions.
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To assess the former, we applied the multiple linear regression from Eq. (1) to the annual

mean 500-hPa temperature (T500) to detect any similarities with the spatial patterns

of regression coefficients seen for TWmax. Both warming (Figure S2b) and El Niños

(Figure S2c) positively affect annual mean T500 across tropical continents. While there

are discernible spatial patterns in the standardized regression coefficients for warming’s

impact on T500, they remain positive and don’t align with the patterns observed in β̂∗
1

(Figure 4b). The negative β̂∗
1 values for TWmax thus might not be tied to T500; however,

relying on the annual mean T500 could potentially overlook higher frequency T500 variability

associated with days on which TWmax occurs.

To explore the other possible cause of the spatial pattern in the standardized coef-

ficient of warming—local land surface conditions—we analyzed local annual mean 2-m

air temperature (Ts) and specific humidity (qs) trends. Most tropical land regions show

predominantly positive Ts trends (Figure S1a). In contrast, qs trends are more spatially

varied. Areas with negative β̂∗
1 values, notably parts of Africa, South America, and Aus-

tralia, reveal significant drying trends in the annual mean qs (Figure S1b). This drying

offsets Ts warming, and the ensuing annual mean moist static energy trends (Figure S1c)

closely mirror the distribution of β̂∗
1 . This indicates a potential link between local drying

and negative TWmax trends. In any case, interpreting qs trends over tropical continents

requires caution as these regions lack abundant long-term in-situ measurements.

To summarize, it is very likely that local land surface conditions play a role in the

spatial inhomogeneity of β̂∗
1 . This could be through land use change and soil moisture-
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TW coupling. It is unclear whether TWmax over regions of negative are β̂∗
1 tightly coupled

to T500 from the current analysis and future research is warranted.

Text S3. Cross-validation of the regression model

Before generating predictions with the multiple linear regression model, we evaluate its

predictive performance through leave-one-out cross-validation and walk-forward valida-

tion.

The leave-one-out cross-validation results in a 9.4% increase in the Root Mean Squared

Error (RMSE) for the tropical mean. Similarly, the increase in RMSE ranges from 8.9%

to 9.7% for each of the four focus regions, as shown in Table 1.

The walk-forward validation can be regarded as a simulation of real-time forecasting.

The model is initially fitted on a 20-year segment of the time series data (from 1980 to

2003 with 1983-1984 and 1992-1993 removed). After fitting, the model is tested on the

year immediately following the training set. This process repeats by “walking forward”

in time - each time, the model is re-trained on a segment that includes one more year of

data and then tested on the subsequent year. The results are presented in Figure S6 and

Table 1. The RMSE for the last 19 data points shows a 7.1% increase for the tropical

mean and ranges from 17.6% to 20.1% for the four regions.

These moderate increases in RMSE from both the leave-one-out cross-validation and

walk-forward validation suggest that the model is not seriously overfit. If there is a

substantial increase in the RMSE when certain samples are omitted from the training set

during cross-validation, this suggests the model may struggle with generalizing to unseen

data, rendering it potentially unsuitable for predictive purposes. Moderate increases in
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the RMSE suggest that the model maintains a certain level of robustness and reliability

in its predictions of unseen data.

Text S4. Confidence intervals and prediction intervals

The confidence interval quantifies the range of uncertainty about a population param-

eter, in this case, ˆTWmax. The prediction interval quantifies the range within which we

expect a single new TWmax observation to fall. This prediction interval takes into ac-

count not only the uncertainty in estimating the mean of predicted TWmax but also the

year-to-year variability in individual TWmax observations. Consequently, prediction in-

tervals are wider and are more relevant when using this model for forecasting TWmax in

a forthcoming year.

The 95% confidence interval of the predicted mean ˆTWmax is calculated as:

ˆTWmax ± t0.025,36 se( ˆTWmax) (3)

where the t value of a two-sided significance level of 0.05 with 36 degrees of freedom is

2.028. The 95% prediction interval is given by:

ˆTWmax ± t0.025,36

√
MSE + se( ˆTWmax)2, (4)

where the standard error of fit at xp = (1, 2024,ONIDec,2023)
T is determined by

se( ˆTWmax)
2 = MSE xp

T(XTX)−1xp (5)
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with MSE being the mean squared error and X being the 39×3 regressor matrix:

X =



1 1980 ONIDec,1979

1 1981 ONIDec,1980

1 1982 ONIDec,1981

1 1985 ONIDec,1984
...

...
...

1 1991 ONIDec,1990

1 1994 ONIDec,1993
...

...
...

1 2022 ONIDec,2021


. (6)

MSE is calculated following

MSE =
1

n− k − 1

n∑
i=1

(yi − ŷi)
2, (7)

where n is the number of samples and k = 2 is the number of independent variables.

Text S5. Confidence intervals for the exceedance probability

We calculate the confidence intervals of the probability by bootstrapping the original 39

data points and associated covariate values (a nonparametric bootstrap). For each of the

9999 bootstrap replicates, we estimate the probability of exceeding the previous record

using the multiple linear regression model. Specifically, we assume that the predicted

TWmax at each xp = (1, 2024,ONIDec,2023)
T follows a Gaussian distribution centering

at the predicted mean given by Equation (6) with a standard deviation equalling the

root mean squared error (RMSE). For each ONIDec,2023 value, we then compute the area

under this Gaussian distribution when the predicted TWmax exceeds the highest record,

resulting in the probability of a new TWmax record being set for this replicate. Given the

potential skewness of the probability distribution when the central estimate approaches 0

or 1, we employ the bias-corrected and accelerated (BCa) method for bootstrap confidence

intervals. The BCa bootstrap analysis is conducted using the R “boot” package.
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Figure S1. Linear trends of annual-mean 2-m air temperature (a), specific humidity (b), and

moist static energy (c) from 1979 to 2022 according to ERA5.
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Figure S2. Results of fitting the same model in Eq. (4) but with the annual mean 500-hPa

temperature (T500) as the dependent variable. a, R2. b, Standardized regression coefficient of

constant warming. c, Standardized regression coefficient of ENSO variability.
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Figure S3. R2 of the model in Eq. (4) fitted to zonal-land-mean TWmax using ONI of each

month from preceding years.
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Figure S4. a, Climatology of the annual maximum TW (TWmax) between 1979 and 2022.

The color scale only distinguishes values greater than 25◦C. b, Population density map acquired

from https://neo.gsfc.nasa.gov/view.php?datasetId=SEDAC POP.
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Figure S5. The most common month for the occurrence of annual maximum TW for each

location. Groupings of three months (DJF, MAM, JJA, SON) are shown in b, along with

individual months.
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Figure S6. Time series of predicted TWmax from the original model with all the 39 data points

and that from walk-forward validation for the 30◦S-30◦N land average (a) and for each of the

four defined regions of interest (b-e). The initial training set contains the first 20 data points.

The missing points are the post-volcanic eruption years.
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Figure S7. Top 25% mean SST between 30◦S and 30◦N for each month of year has similar

interannual variability. The average of the top 25% of monthly mean SST for each month is

calculated and the average of all years for each month is subtracted to emphasize the anomalies.

To align with the ENSO cycle, SST25% anomalies for the months of September to December for

the preceding calendar year are shown, thereby initiating the annual cycle from September.
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