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Abstract

This dissertation synthesizes long-standing theoretical ideas to develop quantitative con-
straints on several aspects of tropical climate, namely convection, heat stress, precipitation,
and outgoing longwave radiation.

A zeroth-order picture of the tropical troposphere is that deep convection maintains a
moist adiabatic temperature profile in the vertical and gravity waves quickly smooth any
temperature gradients in the horizontal, which is formally known as convective quasi-
equilibrium (QE) and the weak-temperature-gradient (WTG) assumption. We expect that
strict QE-WTG should yield a uniformmoist static energy (MSE) threshold for deep con-
vection. Consistent with the theoretical expectation, we find that deep convection only
occurs over the highest subcloudMSEs and that the convective subcloudMSE (daily-mean
subcloudMSE weighted by precipitation) is roughly uniform between 20°S and 20°N. QE-
WTG forces the highest subcloudMSEs to be equal over land and ocean, not only in the
present climate but also in much colder and warmer climates.

The annual-maximumwet-bulb temperature, a metric for extreme heat stress, is also
controlled by the QE-WTG dynamics due to the functional relationship of wet-bulb tem-
perature withMSE. We provide a theoretical projection that the annual-maximumwet-
bulb temperature will increase roughly uniformly by about 1◦C for each 1◦C of tropical
mean warming. This result suggests that limiting the mean surface warming also limits heat
stress extremes in the tropics.

QE-WTG controls the occurrence of deep convection and thus precipitation. Global
climate models consistently predict that tropical precipitation will be distributed more un-
evenly in space with global warming. We show that the unevenness of precipitation can be
traced back to the unevenness of subcloudMSE distribution. We then explain the change
in sublcoudMSE distribution with a simple scaling accounting for the Clausius-Clapeyron
increases of boundary-layer specific humidity under invariant relative humidities. The in-
variance of relative humidities also has implications for the linearity of outgoing longwave
radiation with surface temperature.
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0
Introduction

This thesis includes some recent advances on several aspects of the Earth’s tropical atmo-

sphere – convection, precipitation, heat stress, and outgoing longwave radiation. We single

out the tropics because the nature of the atmospheric motion in the tropics is different

from that in the mid-latitudes. In the mid-latitudes, the quasi-balance between the Cori-

olis force resulting from the Earth’s rotation and the pressure gradient force provides the
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zeroth-order constraint for atmospheric motion. This constraint is weak in the tropics be-

cause the Coriolis force projects weakly onto the horizontal plane.

The tropical atmospheric motion is thus not the curling and swirling dye in rotating

tank experiments, but it bears some similarity to the boiling water in one’s kitchen. Heated

water rises from the bottom of the pot making room for the sinking, cooler water, just like

frequent deep convection in the tropical atmosphere brings surface air upward. How-

ever, tropical convection is different from boiling water in two ways. Convective insta-

bility in boiling water is produced by heating from below but is also produced by cooling

throughout the tropical troposphere. CO2 and water vapor in the atmosphere both inter-

act strongly with radiation, resulting in a net cooling that has to be balanced by convec-

tive heating. Also, atmospheric convection is irreversible. A water parcel in the boiling pot

can quickly (seconds, depending on the depth of the pot and the strength of the stove)

sink back to the bottom as the same water parcel, but an air parcel brought up quickly

(hours) by deep convection loses the condensed water along the way in the form of precipi-

tation and cannot go down following the same path up. This dry air parcel then has to cool

through radiation and sink slowly (tens of days) back to the surface. The strong asymmetry

between upward and downward air velocity causes an approximately 1:1000 ratio between

the area fractions that are unstable and stable to deep convection. The above description is

the radiative-convective equilibrium, a useful starting point of conceptually thinking about

the tropical atmosphere.

Although simulations of radiative-convective equilibrium and associated theoretical

explanations have shed light on many important aspects of tropical atmospheric dynam-

ics, there is still a long distance from these, mostly idealized, simulations to the observed
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climate. Similar gaps between theory and reality can be found in all aspects of climate sci-

ence, which is essentially due to the complexity of the climate system. Scientists, well aware

of the existence of such knowledge gaps, build up understanding for real-world problems

through a hierarchical approach – an approach by building a hierarchy of models of vari-

ous degrees of complexities spacing between idealized theories and complex climate systems

(Held, 2005). In understanding the tropical atmosphere, this thesis’ work carries the same

spirit as the hierarchical approach, but instead of building a hierarchy of models, I attempt

to connect observations directly to established theories.

In the following chapters, I will first present the explorations of tropical precipitation

observations at the early stages of my graduate study (Chapter 1), which inspired the ideas

of Chapters 2 and 4. Readers interested in solid results could skip Chapter 1. Chapter 2

shows that a conceptual picture of tropical atmospheric dynamics comprising the con-

vective quasi-equilibrium and the weak-temperature gradient assumptions can effectively

unify the observed moist static energy in subcloud layers over land and ocean. Chapter 3 is

an application of Chapter 2’s results to heat stress, a concern of society. Chapter 4 presents

a quantitative explanation for the increasingly uneven distribution of tropical precipitation

with global warming. Chapter 5 addresses the radiative aspect of the atmosphere and shows

why the global-mean outgoing longwave radiation is linear with the global-mean surface

temperature despite the prominent super-greenhouse effect over some tropical oceans. In

the end, I will conclude by summarizing the overall findings and discussing possible direc-

tions for future work (Chapter -1). Interested readers are encouraged to refer to the Supple-

mentary Information of published versions of Chapters 2-5 for more technical details.
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1
Precipitation and boundary-layer

thermodynamic properties

1.1 Leaving the latitude-longitude space

The tropics show a wide variety of local climates ranging from rain forests to deserts as a

result of varying precipitation rates across regions (Fig. 1.1). What controls the spatial dis-
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Figure 1.1: Precipitation climatology in January and July. Data shown are daily precipitation in January and July aver‐
aged over the period 2001‐2004 from Tropical Rainfall Measuring Mission (Huffman et al., 2007).

tribution and temporal evolution of tropical precipitation is a fundamental problem in

atmospheric dynamics. An extensive body of research has focused on the role of large-scale

atmospheric circulations in controlling the occurrence of convection and precipitation.

These circulations include the Hadley Cell, the Walker Cell, the Intertropical Convergence

Zone (ITCZ), and monsoon circulations over subtropical land regions. Each of these cir-

culations has a distinctive spatial pattern as a result of, at least to some degree, the Earth’s

rotation. The spatial patterns imply that whether a location receives precipitation is a mat-

ter of geographical location. However, the effect of the Earth’s rotation is relatively weak

in the tropics, compared to that in the extratropics. Rotation is what tells east from west,

north from south; without a strong constraint from rotation, geographical location is less

important. For the tropics, could something else be more important than location in de-

termining whether a place receives precipitation? Could there be another meaningful way

of inspecting tropical precipitation if we abandon the conventional map view? With these

general questions, we start by graphing tropical precipitation, but not on a map.

Tropical rain band migrates in latitudes and longitudes with seasons (Fig. 1.1), but we

are interested in whether this migration in space changes the total surface area receiving pre-

cipitation. We thus calculate howmuch area the most intense 90%, 50%, or 10% of total

precipitation covers (Fig. 1.2a). The area is determined by sorting daily-mean precipitation

intensities of all locations in the tropics in descending order and take the cumulative area
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Figure 1.2: Area of 10%, 50%, and 90% of most intense precipitation for each day of year. Data shown are daily‐mean
precipitation data from TRMM 30◦S‐30◦N.

that has received a certain percentage of total precipitation (Fig. 1.2b). 90% of total pre-

cipitation falls on only 18% of area, 50% on 4%, 10% on less than 1% – Daily-mean precip-

itation is very unevenly distributed in space. Interestingly, these area of precipitation only

varies by a few percentages with the seasonal cycle, despite the evident spatial shift of rain

bands shown in Fig. 1.1, and finding invariance in variables is always useful. In the next sec-

tion, we will examine the relationship of precipitation with local thermodynamic states to

shed more light on the invariant area of precipitation.

1.2 Into spaces of thermodynamic variables

The theoretical ground for expecting a significant role of boundary-layer thermodynamic

properties in controlling tropical convection is that the free-tropospheric temperature is
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roughly horizontally uniform due to the smallness of the Coriolis parameter near the equa-

tor, known as weak temperature gradient (WTG) (Charney, 1963; Sobel & Bretherton,

2000), and, as a result, whether a location is unstable to convection largely depends on the

thermodynamic property of the boundary layer underneath. Motivated by this concept,

the study of tropical convection activity as a function of sea surface temperature (SST)

dates back to decades ago. The average intensity of convection increases sharply when the

underlying SST is above a threshold of around 27◦C and then it strangely decreases as SST

goes beyond 30◦C (Zhang, 1993; Waliser & Graham, 1993). Later work argues that this

decrease of precipitation with SST cannot be explained with thermodynamics alone, and

other non-thermodynamic factors such as surface latent heat fluxes (Zhang &Mcphaden,

1995) or atmospheric intrinsic dynamics (He et al., 2018) have to be considered. However,

the expected monotonic relationship between precipitation and SST is based on premises

that may not hold. Therefore, the decrease of precipitation rate with SST is not enough

to write off the role of thermodynamics. In the following, we will present a systematic ex-

ploration of the relationship between precipitation and boundary-layer thermodynamic

properties.

We consider three thermodynamic state variables, namely SST, subcloud moist static

energy, and an approximation to CAPE termed subcloud buoyancy (Williams & Pierre-

humbert, 2017). Subcloud buoyancy is the most adequate variable to describe the column

instability, followed by subcloudMSE and SST.

Subcloud buoyancy (B) B is defined as the difference between the moist static energy

(MSE) in the subcloud layer (hs hereafter) and the saturatedMSE in the free troposphere
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(h∗
a).

B = hs − h∗
a (1.1)

hs is calculated as the average MSE between the surface and the lifting condensation level

and h∗
a is calculated as the average saturatedMSE between the lifting condensation level

and the 300 hPa pressure level, where moist static energy h is calculated following the defi-

nition

h = cpT + gz + Lq. (1.2)

SubcloudMSE (hs) If the free-tropospheric temperature is strictly uniform in the hori-

zontal, thenB can be reduced to subcloudMSE (hs). Comparing tropical precipitation as

a function of B and hs elucidates the role of the departure from strictly uniform h∗
a. Note

thatB and hs are defined over both land and ocean, but this is not the case for surface tem-

perature, the last variable considered.

Sea surface temperature (SST) Over the ocean, geopotential height variations are

negligible, and relative humidity in the marine boundary layer is uniform; the same is not

true for the land. Therefore hs can be reduced to SST under these premises.

B and hs are derived from 6-hourly reanalysis fields of temperature, specific humidity,

and geopotential height on pressure levels from ERA-Interim (Dee et al., 2011) then aver-

aged to the daily timescale. The lifting condensation level is calculated location-wise every

6 hours. Daily SST data from the NOAA 1/4◦ daily Optimum Interpolation Sea Surface

Temperature (Reynolds et al., 2007) are interpolated to the resolution of ERA-Interim

(0.75◦x0.75◦) with a bilinear algorithm. We use daily precipitation observations from Trop-
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Figure 1.3: Mean precipitation intensity in spaces of thermodynamic state variables. Also shown is the frequency distri‐
bution (light grey) of each thermodynamic state variable.

ical Rainfall MeasuringMission (TRMM) (Huffman et al., 2007) aggregated to the ERA-

Interim resolution conserving the total precipitation flux.

1.2.1 Precipitation distribution in spaces of thermodynamic variables

Fig. 1.3 shows the mean precipitation intensity as a function of SST, hs andB. Up to

about 30◦C, precipitation intensity increases with SST. At SSTs higher than 30◦C precip-
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Figure 1.4: Precipitation distribution in spaces of thermodynamics variables. The distribution of precipitation as func‐
tions of thermodynamic variables (red lines) namely (a) sea surface temperature (SST), (b) subcloud moist static energy
(hs), and (c) subcloud buoyancy (B) and the corresponding histogram of each thermodynamic variable (black lines). The
solid lines are for data between 30◦S‐30◦N, and the dotted lines are for data between 20◦S‐20◦N.

itation intensity decreases with SST, and about 10% of the tropical ocean is in this regime.

Figs. 1.3b and c show that in hs- andB-space, this peculiar regime of decreasing precipi-

tation intensity still exists, however, the area fraction experiencing such regime is less than

0.1% of the tropics. The improved monotonic relationship of precipitation with hs than

SST suggests that relative humidity variations in the subcloud layer plays a role. The rela-

tive humidity near the ocean surface is always high, but the subcloud layer on average can

be much dryer).
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Fig. 1.4 shows precipitation fraction as a function of SST, hs andB, as well as the prob-

ability distribution of these three variables. Precipitation fraction is calculated by binning

daily-mean precipitation observations in SST bins of 0.1 K, subcloudMSE bins of 0.2 J/g,

and subcloud buoyancy bins 0.2 J/g, adding up the precipitation in each bin then dividing

the sum by the total precipitation in the tropics. Tropical SST has a skewed distribution

covering a wide range of values from well below 20◦C to above 30◦C, but the precipitation

distribution is much narrower and restricted to the high SST values –More than half of

the oceanic precipitation occurs where SST is above 28◦C (Fig. 1.4a). Similarly, precipi-

tation is restricted to the high ends of hs (Fig. 1.4b) andB (Figure 1.4c) distribution. A

small fraction of precipitation can occur at very low SST or hs indicated by the thin left tail

of the distribution in Fig. 1.4a and b. This part of the precipitation distribution is mainly

induced by extratropical eddies rather than tropical deep convection, a point we will come

back to in Chapter 2. The characteristic width of the precipitation fraction peak, expressed

in terms of the full-width at half-maximum (FWHM) is 6.0 J/g in hs-space and 2.8 J/g in

B-space. The FWHM inB is comparable to the typical value of convective available poten-

tial energy (CAPE) of 2 J/g (Williams & Renno, 1993; Gettelman et al., 2002), indicative

of the sufficiency ofB for our purpose of climatological analysis. The difference by a fac-

tor of two between these two FWHM in hs- andB-space suggests a prominent role of the

horizontal free-tropospheric temperature gradients (or h∗
a).

To enable comparison of different thermodynamic variables, we modify Fig. 1.2b in

such a way that it shows the proportion of precipitation received by the top x% of the area

when precipitation data are sorted according to SST, hs, orB (Fig. 1.5). Fig. 1.5 allows a

convenient comparison of different thermodynamic variables and provides an intuitive vi-
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Figure 1.5: Cumulative precipitation as a function of cumulative area.

sualization of howmuch can be explained by the thermodynamics – If the thermodynamic

variable has a deterministic relationship with precipitation, the resulting curve would be

the same as the original curve when precipitation data are sorted according to itself; If the

thermodynamic variable does not provide any information on the precipitation distribu-

tion at all, the resulting curve would be a straight line from (0,0) to (1,1). The three ther-

modynamic variables are all between these two extreme situations. It takes 17% of the area

to collect 90% of total precipitation while it takes the top 48% ofB, top 60% of hs, and top

72% of SST to collect 90% of precipitation, all of which are much larger than the 17%.

1.2.2 The lack of seasonality in convective regions

Since all three thermodynamic variables can explain precipitation intensity to some de-

gree (Fig. 1.5), we look into the distribution of those thermodynamic variables for clues
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Figure 1.6: The seasonal evolution of the thermodynamic variables in percentiles. The annual means for each percentile
are subtracted. The dashed black line in (a) shows where the zeroB is.

on the lack of seasonality of the area of precipitation (Fig. 1.2a). Figure 1.6a shows theB

percentiles throughout the seasonal cycle with the annual mean for each percentile sub-

tracted to isolate the anomalies. The area of positiveB is around 25% throughout the year

(dashed black line in Fig. 1.6a), within which theB distribution is largely invariant with

seasons. While we don’t make a causual argument that the invariance area of positiveB

leads to the invariance area of precipitation, this phenomenon is an interesting one that

needs to be better understood. A seasonal cycle is visible in the lower 75% of the area with

negativeB, however, these regions are stable to convection receive little precipitation. For

subcloudMSE (Fig. 1.6b) and SST (Fig. 1.6c), the seasonality is also more visible in the

bottom percentiles than in the top percentiles. The “warmest” regions in the tropics appear

to be rather insensitive to the varying solar forcing with seasons.
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Figure 1.7: The high and low percentiles and the precipitation‐weighted mean of subcloud MSE as a function of lati‐
tude. The 10th and 90th percentile of subcloud MSE are first taken for each year then averaged over 2001‐2014. The
precipitation‐weighted subcloud MSE is also first calculated for each latitude and each year then the multiyear average
is taken. Daily‐mean subcloud MSE derived from ERA‐Interim and daily‐mean precipitation observation from TRMM is
used.

The percentile figure (Fig. 1.6) is abstract and some extra dimension of the space is help-

ful to our understanding. We show the 10th and the 90th percentile of sublcoudMSE at

each latitude along with the convective MSE in Fig. 1.7. The convective (subcloud) MSE

is calculated by weighting the daily-mean subcloudMSE at each gridbox with the corre-

sponding rainfall received, following the precipitation-weighting method first introduced

in Flannaghan et al. (2014).

Convective subcloudMSE =

∑
i Pihsi∑
i Pi

(1.3)

This figure contains much non-trivial information: First, the convective MSE is nearly

uniform in the deep tropics, indicating that precipitation on average occurs at the same

subcloudMSE across those latitudes. Since precipitation is a proxy for convective mass

flux, another way to interpret this is that the average MSE of air brought up by convection

is the same at each latitude. Second, the 90th percentile of subcloudMSE exhibit strong
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equator-to-pole gradients, however the 10th percentile is roughly uniform – There appears

to be a spatially uniform upper bound on subcloudMSE. Third, the 10th percentile of

subcloudMSE is close to the precipitation-weightedMSE, indicating that convection oc-

curs at top subcloudMSEs. Connecting Fig. 1.7 with the percentiles of subcloudMSE

shown in Fig. 1.6b, convection occurs at the largely invariant topMSE percentiles, and

the rainband moving north and south with seasons thus results in a uniform precipitation-

weightedMSE.

1.3 What is invariant about tropical precipitation

The exploration of tropical precipitation and thermodynamic variables presented in this

chapter is complementary to the conventional view of presenting precipitation on a map.

This chapter is phenomenological, but it has fueled the ideas of the following chapters. To

conclude this chapter without a solid conclusion, I summarize a few things that are invari-

ant about tropical precipitation in an annual cycle:

1. The area fraction of precipitation. However, in Chapter 4, we will show that this

area changes with warming.

2. The area fraction of positive subcloud buoyancy.

3. The precipitation-weightedMSE. The uniform precipitation-weightedMSE in Fig.

1.7 becomes interesting once we separate land and ocean, which is to be discussed in

the following Chapter.
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*This chapter is a reproduction of Zhang & Fueglistaler (2020).

2
The Quasi-Equilibrium andWeak

Temperature Gradient Framework

2.1 Two cornerstones of tropical atmospheric dynamics

Convective quasi-equilibrium (QE) Convective quasi-equilibrium is originally

proposed by Arakawa & Schubert (1974) as a closure assumption for a parameterization
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of convection. Over the decades that follow, the importance of QE is recognized in con-

structing theories of tropical large-scale atmospheric circulations, and multiple versions of

QE have been developed (e.g. Betts, 1986; Emanuel et al., 1994; Raymond, 1995; Emanuel,

2007). The most strict version of QE requires that moist convection always maintain a

moist adiabatic temperature profile and the neutral buoyancy of air lifted from the sub-

cloud layer to levels above. Relaxed versions of QE allow the actual atmosphere to be re-

laxed toward the strict QE state over some time scale.

Weak temperature gradients (WTG) The weak temperature gradient assumption

states that the free troposphere cannot sustain substantial horizontal temperature gradients

due to the smallness of the Coriolis parameter in the tropics (e.g., Charney, 1963; Sobel &

Bretherton, 2000), and a direct consequence of WTG is that on large scale the dominant

balance is between heating and vertical advection of potential temperature (e.g., Sobel et al.,

2001). While QE is used to parameterize small-scale convection, the weak temperature gra-

dient assumption is used to parameterize the large-scale circulation when the focus of the

simulation is on convective scale (e.g., Sobel & Bretherton, 2000; Raymond & Zeng, 2005).

The QE-WTG framework In our QE-WTG framework, the tropical troposphere can

be seen as consisting of a boundary layer with diverse temperature, humidity, and topog-

raphy (the three components of MSE) and a free troposphere that is comparatively homo-

geneous. Deep convection transports boundary layer air upward into the free troposphere.

Once the free troposphere is filled with buoyant air originating from the warm and humid

boundary layer, it suppresses upward motion in the colder regions, establishing a threshold

for convection. Consequently, at the limit of strict quasi-equilibrium and zero temperature
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gradient, simultaneously convecting regions, regardless of over land or ocean, should have

the same subcloudMSE which we refer to as the MSE threshold for convection (Fig.2.1).

ℎ!,#

ℎ$,#∗

ℎ!,&

ℎ$,&∗ WTG

QE-WTG

Q
E

Q
E

Figure 2.1: Schematic of the QE‐WTG framework. QE denotes convective quasi‐equilibrium, and WTG denotes weak
temperature gradients. hs denotes subcloud MSE, and h∗

a denotes the saturated MSE averaged in the free troposphere.
Subscripts indicate two different locations that could be far apart and could be over either land or ocean.

Our QE-WTG framework is inspired by previous work inspecting the tropical tropo-

sphere from similar angles. Joshi et al. (2008) note that in model calculations there exists a

level sufficiently high up in the troposphere where temperature change in response to forc-

ing is similar over land and ocean, and the larger surface temperature response over land

then is consistent with the different changes in lapse rates over land and ocean. Byrne &

O’Gorman (2013a) formulate this effect in terms of the equality of equivalent potential

temperature averaged over land and ocean as a result of weak temperature gradients in the

free troposphere and convective quasi-equilibrium, which is largely supported by simu-

lations with idealized climate models. However, they also notice that this equality breaks

down in realistic climate models (Byrne &O’Gorman, 2013b), and the changes in the

mean surface equivalent potential temperature, rather than the mean equivalent poten-

tial temperatures themselves, are more similar over land and ocean (Byrne &O’Gorman,
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2013b, 2018).

In the following, we present observations and model results to provide a more precise

picture than previous work of how tropical atmospheric dynamics couple the subcloud

MSE over land and ocean to the free troposphere.

2.2 TheMSE threshold for convection: a zeroth-order picture

While previous studies (Byrne &O’Gorman, 2013a,b, 2018) evaluate the QE-WTG pic-

ture with the large-scale meanMSE over land and ocean, we argue that QE-WTG should be

evaluated only in the regions where deep convection couples the MSE in the subcloud layer

to the free troposphere and does not apply to the regions where the sublcoudMSE is too

low to reach the threshold for convection. Leveraging the precipitation-weighting method

in Section 1.2.2, we can show that QE-WTG apply to each latitude in the observations,

even on a daily timescale, and there is a clear breakdown of the theoretical picture around

20◦ in both hemispheres.

The zonal-mean subcloudMSE (Fig. 2.2a) peaks around the equator reflecting the

annual-mean solar forcing, whereas the convective subcloudMSE (Fig. 2.2b) is roughly

uniform throughout the inner tropics and very similar between land and ocean, reflecting

the weak horizontal temperature gradients in the free troposphere. The sharp drop-off at

about 20◦ in both hemispheres indicates where the Coriolis effect is no longer negligible

and QE-WTG breaks down. As a result, precipitation in the subtropics can occur either

at very low subcloudMSE when induced by the extratropical eddies (Funatsu &Waugh,

2008) or at very high subcloudMSE during the South Asian monsoon which creates the

peak in the convective MSE around 25◦N over land (Boos & Kuang, 2010). Using sub-
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Figure 2.2: Zonal‐mean (a) and convective (b) subcloud moist static energy (MSE) over land (red) and ocean (blue). Sub‐
cloud MSE is derived from ERA‐Interim and precipitation is from TRMM. Daily data from 2001 to 2014 are used. The
convective subcloud MSE is determined by weighting the subcloud MSE at each longitude with the corresponding pre‐
cipitation within each latitudinal band of 0.75◦ wide.

cloudMSE derived fromMERRA2 instead of ERA-Interim does not change this result.

The contrast between the mean and the convective subcloudMSE resolves the aforemen-

tioned inconsistency between the strict QE-WTG theory and the realistic simulations men-

tioned in Byrne &O’Gorman (2013b). Convection only occurs in the part of the domain

where the subcloudMSE is high enough to reach the tropically uniformMSE threshold

of about 343 J/g shown in Fig. 2.2b, and in the part of the domain that is not convecting

subcloudMSE is not coupled to the free troposphere and therefore can differ between land

and ocean.

The calculation of subcloudMSE deserves some description. The common threshold

MSE over land and ocean emerges clearly if the monthly meanMSEs averaged from 925

hPa to 1000 hPa are weighted by monthly precipitation. However, convection occurs on

the timescale of hours, and to not leave anything to chance subcloudMSE is calculated as

follows: We calculate the lifting condensation level (LCL) as the pressure level closest to the
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first saturation point of an adiabatically lifted surface parcel on a 6-hourly time frequency

for every location and compare the LCLs to the 6-hourly boundary layer heights from

ERA-Interim. SubcloudMSE is then the average MSE either within the layer between the

ground and the LCL when the LCL is within the boundary layer. Over dry land, the LCL

can be in the middle troposphere which doesn’t make sense. In this case, the boundary-

layer height from ERA-Interim is used. The 6-hourly subcloudMSE is averaged to a daily

timescale to match the time resolution of the precipitation observation.

A more stringent test examines how effectively QE-WTGworks on daily timescales.

Fig. 2.3 shows the seasonal evolution of the zonal-mean subcloudMSE in the convec-

tive regions (left column) and non-convective regions (right column) over land (lower

row) and ocean (upper row). Here the convective MSE is defined as the mean subcloud

MSE where the rain rate is above 6mm/day (Sobel et al., 2002) and vice versa for the non-

convective MSE. The results are not sensitive to the choice of a precipitation threshold

from 2mm/day to 20mm/day. This method is different from the precipitation-weighting

method used in Fig. 2.2 but yields similar convective MSE values, essentially because pre-

cipitation anywhere in the inner tropics occurs at very similar subcloudMSE. To facilitate

the comparison, a reference value for each day of year, calculated as the mean subcloud

MSE in the convective regions over equatorial (5◦S-5◦N) ocean, is subtracted. Even on a

single day of year, the convective MSE is still uniform over a broad range in latitude, though

this latitudinal range has seasonality (Fig. 2.3, right column). Within 20◦S-20◦N, the sea-

sonal evolution of the non-convective MSE has more prominent land-ocean contrast than

the convective MSE (indicated by the shapes of the dashed black contours), supporting the

concept that only the subcloudMSE in the convective regions over land and ocean are tied
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Figure 2.3: The mean subcloud moist static energy (MSE) as a function of latitude and day of year in the non‐convective
and convective regions over ocean and land. A reference value for each day of year, calculated as the mean subcloud
MSE in the convective regions over equatorial (5◦S‐5◦N) ocean, is subtracted from all panels. Daily data are used from
ERA‐Interim and TRMM between 2001 and 2014. Convective and non‐convective regions are identified with a pre‐
cipitation threshold of 6 mm/day. The dashed contour lines indicate the subcloud MSE within±3 J/g relative to the
common reference value.
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Figure 2.4: Zonal‐mean (a) and convective (b) subcloud moist static energy (MSE) for model simulations. The multi‐
model mean of monthly data from CMIP5 models are shown. Three experiments are shown from bottom to top: the
Last Glacial Maximum, the period from 1979 to 2005 in the simulation of current climate (labeled “Present”), and the last
20 years of the 21st century in the global warming simulation (labeled “RCP 8.5 scenario”).

to the uniform temperature in the free troposphere.

The physics involved in the QE-WTGmechanism does not rely on the mean climatic

state, therefore QE-WTG is expected to hold in all climates. Global climate models from

the CoupledModel Intercomparison Project phase 5 (CMIP5) (Taylor et al., 2012) that

correctly reproduce the observed uniform convective MSE in the simulations of the present

climate also show a uniform convective MSE in the projections of a much warmer climate

under the Representative Concentration Pathway 8.5 (RCP8.5) emission scenario (Fig.

2.4). Model simulations of the much colder Last Glacial Maximum also show a uniform

convective MSE over both land and ocean. Therefore, Fig. 2.4 demonstrates the validity of

QE-WTG in a wide range of climates.
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2.3 Finite width of theMSE threshold: a first-order correction

The latitudinal uniformity of the convective subcloudMSE in the inner tropics and its sim-

ilarity between land and ocean (Fig. 2.2, 2.3) provide observational support for the zeroth-

order picture. However, it is well established that factors such as the mid-tropospheric

humidity (Emanuel, 2019; Brown & Zhang, 1997), convective inhibition (Mapes, 2000),

low-level convergence (Lindzen &Nigam, 1987; Back & Bretherton, 2009), and station-

ary or transient equatorial waves (Gill, 1980; Kiladis et al., 2009) all affect the triggering of

convection. How can these complicating factors be reconciled with the simple picture of a

uniformMSE threshold for convection?

The convective MSE threshold shown in Fig. 2.2b is a weighted mean over a range of

subcloudMSE values rather than a single MSE value. Fig. 2.5a shows the fraction of pre-

cipitation that falls into each subcloudMSE bin of a width of 0.2 J/g. This precipitation

distribution can be roughly regarded as the convective mass flux distribution as a function

of subcloudMSE. If QE-WTGwere strict, this distribution would be a Dirac function

at the highest subcloudMSE. In the observed climate, however, the majority of precipi-

tation occurs around 343 J/g–the value is comparable to the convective MSE (Fig. 2.2a)–

with a Half Width at Half Maximum (HWHM) of 3 J/g. The half width of 3 J/g then en-

capsulates the previously mentioned factors that affect the local triggering of convection.

This width is narrow compared to the entire range of the tropical subcloudMSE of about

60 J/g. Remarkably, the shape of the precipitation distribution as a function of subcloud

MSE is also similar between land and ocean, a result not predicted by the theoretical limit

of QE-WTG.
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Figure 2.5: precipitation distribution as a function of subcloud MSE (left panels) and the corresponding percentiles of
subcloud MSE (right panels). (a) and (b) show precipitation from TRMM and subcloud MSE from ERA‐Interim between
30◦S and 30◦N. (c) and (d) are the same as (a) and (b) but with data between 20◦S and 20◦N. (e) and (f) are the same as
(a) and (b) but is the multi‐model mean of monthly output from CMIP5 models in the coupled simulation from 1979 to
2005 (Table S1). The double arrows indicate where the HWHM is evaluated.
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The tails of the precipitation distribution at very high subcloudMSE above 350 J/g

and low subcloudMSE below 336 J/g are somewhat different for land and ocean, due to

the break-down of QE-WTG in the subtropics. When the latitudinal range is restricted

to 20◦S-20◦N (Fig. 2.5c), the tails disappear and a convective mode centered at 343 J/g

emerges which is almost identical over land and ocean.

Fig. 2.5e is the same as Fig. 2.5(a) but for the CMIP5 multi-model mean. The width of

the MSE threshold is wider than that in the observations, because it is an average of models

with slightly different mean states. In fact, the half width for an individual CMIP5 model

is also 3 J/g on average. Limiting the latitudinal range to 20◦S-20◦N for the CMIP5 models

results in better agreement between land and ocean (not shown) similar to the observa-

tional result (Fig. 2.5c,d).

To put the magnitude of the width into context, we compare it with typical MSE changes

due to departure from the strict QE-WTG: Observed convective available potential en-

ergy (CAPE) varies between 0 and 4 J/g (Williams & Renno, 1993; Gettelman et al., 2002)

and the free tropospheric temperature varies by order 1K horizontally which translates to

about 2 J/g of subcloudMSE. It is thus not obvious which factor contributes more given

the similar amplitudes. We also notice that the width is not strongly dependent on the time

frequency (daily or monthly) of data.

Figs. 2.5b,d,f show the corresponding percentiles of subcloudMSE sorted in ascending

order and averaged in equal-area bins. Fig. 2.5b reiterates that only the highest subcloud

MSE values between 30◦S and 30◦N are coupled over land and ocean while the low sub-

cloudMSE values are free to differ – the upper 30% of subcloudMSE has almost identical

distributions over land and ocean while the lower 70% of the subcloudMSE over ocean is
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systematically higher than that over land. In addition, Figs. 2.5b,d highlight an interesting

aspect of the Earth’s tropical climate: The convective area fraction is approximately equal

over land and ocean.

2.4 Conclusion and Implication

We show that a simple theoretical picture of the tropical troposphere based on the convec-

tive quasi-equilibrium and the weak-temperature-gradient assumptions (QE-WTG) can

effectively explain the observations. In accordance with QE-WTG, the convective sub-

cloudMSE is roughly constant with latitude between 20◦S and 20◦N on a daily timescale

in the observed current climate and the simulated past and future climates. The utility of

QE-WTG is manifested in its capability of reconciling the land-ocean contrast. The vastly

different land and ocean surfaces share almost identical convective subcloudMSE, distri-

bution of highest subcloudMSE values, and precipitation distribution as a function of

subcloudMSE. These results fill the gap between the idealized, conceptual understand-

ing of the tropical atmospheric dynamics and the real world consisting of diverse regional

climates.

Whereas the role of subcloudMSE forcing the free troposphere has been well appre-

ciated in tropical convection, we demonstrate that the horizontally uniform free tropo-

spheric temperature forces the highest subcloudMSE values to be similar over land and

ocean, which is an interesting aspect of convection in the tropics.

If I have to summarize this work in one sentence, it should go as follows: Convective

quasi-equilibrium applies to convective regions but not to non-convective regions – almost

a ludicrous tautology. However, this distinction changes how we understand the constraint
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fromQE-WTG on subcloudMSE. Before, the large-scale mean and annual average of MSE

is considered to be approximately equal over land and ocean, but we show that it is the lo-

cal, maximumMSE on the timescale of a day (or even a couple of hours) to be approxi-

mately equal over land and ocean. This shift frommean to maximum, from annual average

to subdaily values, from large-scale mean to each location has implications for extreme heat

stress projection, which is to be discussed in the following chapter.
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*This chapter is a reproduction of Zhang et al. (2021).

3
Projection of Extreme Heat Stress

3.1 Whywet-bulb temperature

Extreme heat under global warming is a concerning issue for the growing tropical popu-

lation. The most widely used metric for extreme heat has been the extreme temperature.

However, projections of extreme temperatures have large regional uncertainty arising from

insufficient model representation of important land processes (Vogel et al., 2017). More-
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over, to facilitate the estimation of heat-induced health impact (or heat stress), the effect of

humidity should also be included (Kovats &Hajat, 2008; Mitchell et al., 2016), and this

is because the major way for humans to lose metabolic heat in hot weather is evaporative

cooling (sweating) (Hardy et al., 1938; Hardy & Stolwijk, 1966), the efficiency of which

anti-correlates with humidity. In particular, the inclusion of humidity is necessary for as-

sessing heat stress in the tropics, the warmest and the most humid places on the Earth.

The importance of humid heat has been increasingly recognized (Mora et al., 2017; Sher-

wood, 2018). Studies have shown that increased humidity with temperature following the

Clausius-Clapeyron relationship can worsen summer heat stress in the tropics (Delworth

et al., 1999; Willett & Sherwood, 2012), while other work has noticed a reduction in either

relative humidity (Fischer & Knutti, 2013) or specific humidity (Coffel et al., 2019) on the

hottest days (not limited to the tropics). Given the possibility that humidity can interact

with temperature in extreme heat, it is necessary to better quantify and improve our mecha-

nistic understanding of the control of humid heat.

Here, we use the extreme wet-bulb temperature (TW), an integrated temperature-humidity

metric for heat stress (see Methods). TW by definition is the lowest temperature that hu-

man skin can be cooled to through evaporation of sweat. Therefore, the closer TW is to

the upper limit of human skin temperature (around 35◦C), the more intolerable the heat

is, with a survival limit of TW=35◦C (Sherwood &Huber, 2010) (Note that high TW val-

ues below this survival limit also have adverse health impact). Furthermore, TW is a major

component in the wet-bulb globe temperature (WBGT; See Methods) (ISO, 2017) which

is the standard metric for workplace heat stress.

In this chapter, we argue that the regional extreme TW in the tropics is mainly con-
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trigger deep convection.
4. Global warming lifts the TW bar 

uniformly. 

Figure 3.1: Schematic of the mechanism controlling landTWmax.

trolled by robust atmospheric dynamics that have been established previously (Byrne &

O’Gorman, 2013a,b, 2018; Zhang & Fueglistaler, 2020), rather than local processes that are

of more uncertainty. Therefore, tropical extreme TW can be robustly projected on regional

scales under global warming.

3.2 Predicting land by predicting the ocean (theory)

For a theoretical projection ofTWmax, we argue that tropical atmospheric dynamics ex-

ert a strong, tropics-wide control on localTWmax. This control is through the functional

relationship between TW subcloudMSE (hs):

hs(z = 0) = cpT + Lq = cpTW+ Lqsat(TW), (3.1)
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(a) Annual-mean subcloud MSE

(b) Annual maximum of daily subcloud MSE

(c) Annual maximum of daily wet-bulb temperature
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Figure 3.2: MaximumMSE is more uniform than the mean MSE. The annual‐mean (a) and annual‐maximum (b) daily‐
mean subcloud MSE and the annual‐maximum daily 2‐m wet‐bulb temperature (c). Data are based on ERA‐Interim from
2001‐2014. White contours in (a) and (b) are to aid the comparison (The standard deviation is 8.8 J/g for panel (a) and
5.8 J/g for panel (b).)
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where T and q are the temperature and the specific humidity (One can compare the left

hand side of Eq. 3.1 with the definition of MSE in Eq. 1.2). In the tropics, the free-tropospheric

temperature is roughly uniform in the horizontal as a result of the weak effect of the Earth’s

rotation. This horizontally uniform temperature, which is determined by the near-surface

MSE in regions of deep convection, sets the upper bound for MSE at all locations. Indeed,

the maximum near-surface MSE is roughly uniform within 20◦S-20◦N (even more uniform

than the time-meanMSE; Fig. 3.2a,b), and the spatial pattern ofTWmax closely follows the

uniformity of the maximumMSE (Fig. 3.2c). As this upper bound for near-surface MSE

and, equivalently, for TW is a common one over land or over ocean (Zhang & Fueglistaler,

2020), we expect that changes inTWmax should also be roughly equal over land and over

ocean under global warming:

∆TWmax,Land ≈ ∆TWmax,Ocean (3.2)

Eq. (3.2) thus provides a handle onTWmax over land which is challenging to predict due

to various land types and land processes, as a theoretical projection forTWmax over the

ocean can be made relatively easily. Near the ocean surface, the air is close to saturation and

TW changes are approximately equal to temperature changes (exactly equal when air is

saturated), and∆TWmax,Ocean is thus approximately equal to the change in the warmest

SSTs. Therefore, 1◦C of∆TWmax,Land is accompanied by 1◦C of warming of the warmest

SSTs according to Eq. (3.2):

∆TWmax,Ocean ≈ ∆SSTmax (3.3)
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Furthermore, the relatively constant shape of SST histogram under global warming and

interannual variability (Sobel et al., 2002) together result in a 1:1 correspondence between

warming of the warmest SSTs and the mean SST warming:

∆SSTmax ≈ ∆SST (3.4)

Finally, the ocean covers 80% of area in the tropics, and therefore the tropical mean warm-

ing is dominated by mean SST warming:

∆SST ≈ ∆T (3.5)

Combining Eq. 3.2-3.5, we thus expect∆TWmax,Land roughly equals the tropical mean

warming.

3.3 Global climate model projections

Fig. 3.3a shows the projections of extreme TW (TWmax) and extreme temperatures (Tmax)

by 22 global climate models from the CoupledModel Intercomparison Project phase

5 (CMIP5) (Taylor et al., 2012) under the Representative Concentration Pathway 8.5

(RCP 8.5) emission scenario (Note thatTWmax and Tmax mostly refer to the annual max-

imum of dailymean values in this paper, and refer to the annual maximum of 3-hourly

values when specifically stated). The multi-model mean of Tmax averaged over tropical land

within 20◦S-20◦Nwarms faster than the tropical mean temperature. However,TWmax

closely follows the tropical mean warming, similar to an earlier finding using an atmo-

spheric model coupled to a slab ocean (Sherwood &Huber, 2010). These results also hold
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Figure 3.3: TWmax and Tmax trends in climate models under RCP 8.5. a, Multi‐model‐mean time series of the
tropical‐mean (20◦S‐20◦N) temperature (T ; cyan), land‐mean Tmax (red), and land‐meanTWmax (blue). b and c,
The same as a but using the annual‐maximum 3‐hourly values for Tmax andTWmax for two individual models. d and
e, Multi‐model‐mean location‐specific Tmax andTWmax trends normalized by T trends.
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Figure 3.4: Model agreement on regionalTWmax projections. Multi‐model means (lines) and spreads (2.5‐97.5th
percentiles; shading) for regional Tmax (red) andTWmax (blue) as a function of the tropical mean warming are shown
for four regions, namely a Amazon rainforest, bMaritime Continent, c Indian Peninsula, and d Sahel (Only land data
within the black frames on the maps are sampled). The dashed black lines indicate the 1:1 ratio.

when analyzing 3-hourly data that resolve the diurnal cycle from two models (GFDL-CM3

and IPSL-CM5A-LR) (Fig. 3.3b,c).

Figs. 3.3d,e show Tmax andTWmax trends for all locations normalized by the tropical

mean warming under RCP 8.5. Tmax warming is spatially inhomogeneous over land rang-

ing from 1.0◦C to 2.3◦C for each 1◦C of tropical mean warming (Fig. 3.3d) consistent with

previous findings. In contrast, we find that increases ofTWmax has no significant land-

ocean contrast ranging from 0.8◦C to 1.3◦C for each 1◦C of tropical mean warming (Fig.

3.3e). Using the annual-maximum 3-hourly TW forTWmax does not change this result.

36



The spatially uniformTWmax trend (Fig. 3.3e) is not a cancellation of errors among

different models. Instead, all models show good agreement onTWmax trend, even down

to regional scales. Fig. 3.4 shows the model spread (2.5-97.5th percentiles) of Tmax and

TWmax projections for four selected regions that have caught substantial attention in the

literature, namely the Amazon rainforest, the Maritime Continent, the Indian peninsula,

and the Sahel. Projected Tmax warming has a large spread among models, which is espe-

cially prominent in the Amazon rainforest, consistent with earlier analysis (Vogel et al.,

2017). However, for regionalTWmax, all 22 climate models project a close to 1:1 ratio with

the tropical mean warming. Using the annual maximum of 3-hourly TW does not change

this result. Intriguingly, the model spread of Tmax tends to grow with the amplitude of the

projected warming (pronounced for the Amazon rainforest and the Maritime Continent),

whereas the model spread ofTWmax does not show evident growth within the range of

simulated warming (roughly 4◦C). That the inter-model spread is much less forTWmax

projections than for Tmax is also true for other tropical land regions.

To summarize, global climate models predict thatTWmax will increase roughly uni-

formly in the tropics by about 1◦C for each 1◦C of tropical mean warming. Models show

wide spread on regional Tmax projections but agree very well upon regionalTWmax.

Global climate models shown in Figs. 3.3, 3.4 are consistent with the theoretical con-

sideration in Eq. 3.2-3.5. For each 1◦C of tropical mean warming, models on average give

1.05 ◦C of∆TWmax,Land, 0.93◦C of∆TWmax,Ocean, and 0.91◦C of the warmest-quartile-

mean SST increase, all close to 1◦C.
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Figure 3.5: TWmax in observations and reanalysis data. a, Time series and corresponding linear trends of tropical
mean temperature (T ; solid cyan), land‐mean Tmax (red), land‐meanTWmax from stations (solid blue) and ERA‐
Interim (dashed blue), and the warmest‐quartile‐mean SST from HadISST (dashed cyan) for 1979‐2018 (20◦S‐20◦N).
The confidence intervals for the linear trends represent 95% significance assuming that the detrended annual data
points are independent. b, Linear regression slopes of localTWmax onto T in the interannual variabilities (linear
trends removed) from ERA‐Interim for 1979‐2018. Regions whereTWmax and T are not correlated on a 95% sig‐
nificance level are hatched. c. Histograms of regression slopes of localTWmax onto T (linear trends removed) for
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solid). Shading indicates the 25‐75th percentiles of models.
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3.4 Observational evidence

From 1979 to 2018, the tropical (20◦S-20◦N) land mean Tmax trend has a 95% confidence

interval of 0.24-0.31◦C/decade, which is almost three times of the tropical mean warm-

ing of 0.08-0.12◦C/decade based on ERA-Interim reanalysis (Dee et al., 2011) (Fig. 3.5a).

TWmax has a trend of 0.05-0.10◦C/decade, very similar to the tropical mean warming, and

the interannual variabilities of the two are highly correlated with a correlation coefficient

of 0.85 (Fig. 3.5a). Using the annual-maximum 3-hourly TW from ERA-Interim yields

very similar anomalies, though the long-term trend is smaller. Furthermore, station mea-

surements of TW provided by HadISD (Dunn et al., 2016) show thatTWmax averaged

over tropical stations are highly correlated with that from ERA-Interim and have a similar

trend of 0.05-0.10◦C/decade (Fig. 3.5a). The consistency of reanalysis data with station

observations and the theory lends support to the quality of the reanalysis data over tropical

land.

The warmest-quartile-mean SST (the average of the top 25% of monthly SST at all grid

points within each year) fromHadISST (Rayner et al., 2003) is highly correlated with land-

meanTWmax and has a similar trend of 0.08-0.12◦C/decade (Fig. 3.5a). Satellite SST ob-

servations and station TW observations are largely independent, and the very good con-

sistency in their extreme values lends strong support to the aforementioned argument that

TWmax over land is coupled to the warmest SSTs. Strong El Niño events have the potential

of warming the warmest SSTs and, as a result, affectTWmax over land (e.g., 1998 in Fig.

3.5a).

Location-specific evaluation of long-termTWmax trends for the observations suffers
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from the smallness of the warming signal, but interannual variability of SST provides room

for testing the 1:1 relationship withTWmax. Regression slopes ofTWmax (ERA-Interim)

onto the tropical mean temperature (linear trends removed) is relatively uniform over most

of the land regions within 20◦S-20◦N (Fig. 3.5b) with a mode value close to 1 (Fig. 3.5c).

This relationship loosens in the subtropics (indicated by the hatching in Fig. 3.5b), consis-

tent with the latitudinal range where the theory works (Zhang & Fueglistaler, 2020). That

the Andes and the southern edge of the Sahara have much higherTWmax sensitivity does

not violate the proposed theory, as climatologicalTWmax in those regions is too low to

trigger convection and thus not constrained by the aforementioned mechanism. The stan-

dard deviation of these slopes in the reanalysis is larger than that for the global warming

simulations shown in Fig. 3.3e (Fig. 3.5c). A likely explanation is that the spatial pattern

ofTWmax can change in the interannual variability and such a spatial rearrangement can

cause a spread in the regression slopes but does not affect the tropical averages shown in

Fig. 3.5a. Indeed, global climate models also show a similar spread ofTWmax trends un-

der historical radiative forcing, and the removal of long-term trends in the global warming

simulations for the same set of models also result in a similar spread (Fig. 3.5c). Therefore,

regionalTWmax trends diagnosed from reanalysis data over the past 40 years are consistent

with global climate models. Also for similar reasons, we do not expect every station to give

the sameTWmax trend either.

While we do not attempt to formulate an attribution statement for theTWmax trend

over land seen in Fig. 3.5a, we note that the tight relationship in the overall trend, as well

as higher frequency variability, strongly suggests that any attribution statements for the

tropical mean temperature or SST can also be applied toTWmax.
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Figure 3.6: Uncertainty of Tmax andTWmax projection in a 1.5◦C warmer world (land between 20◦S‐20◦N). Distri‐
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3.5 Implications for the future climate

Consistency of model results with the theory and observations lends strong support to

the capability of global climate models in properly simulating regionalTWmax increases.

In a 1.5◦Cwarmer world, the projected 66 per cent confidence interval (equivalent to

IPCC’s “likely range”) forTWmax increases across all tropical land regions (20◦S-20◦N)

is 1.33-1.49◦C, consistent with the simulated tropical mean warming of∼1.4◦C in a 1.5◦C

warmer climate (Fig. 3.6). On the other hand, projected Tmax increases have a wider dis-

tribution, the absolute (relative) standard deviation of which is 3.7 (1.8) times of that of

TWmax increases. The reduction in uncertainty is more pronounced for regions where

Tmax projections are most uncertain. For example, in the Amazon rainforest and the Mar-

itime Continent (Fig. 3.4), the absolute (relative) uncertainty of Tmax increases is around 4

(2.5) times of that ofTWmax increases.
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The non-local control ofTWmax by the warmest SSTs seems to be at odds with the per-

ception that these extreme events are driven by rare local meteorology, and this controversy

deserves some clarification. WhileTWmax events are driven by local processes, the potential

magnitude ofTWmax is largely set by the uniform free tropospheric temperature. The ef-

fectiveness of this non-local control is evident in the uniformity ofTWmax increases in Fig.

3.3d and the good agreement across models in Fig. 3.4, neither of which can be explained

by the heterogeneity of local processes. Moreover, the existence of such a non-local control

within the tropics also explains why the tropics are consistently warm and humid, but the

highest TW andWBGT are observed in the subtropics (Willett & Sherwood, 2012; Pal &

Eltahir, 2016; Im et al., 2017). These considerations thus support the picture that the mag-

nitude of∆TWmax across tropical land regions is set by the warmest SSTs and not local

processes or the spatial pattern of SST.

Our results imply that curtailing global mean warming will have a proportional effect

on regionalTWmax in the tropics. The maximum 3-hourly TW (ERA-Interim) ever ex-

perienced in the past 40 years by 99.98% of the land area within 20◦S-20◦N is below 33

◦C. Therefore, a 1.5◦C or 2◦Cwarmer world will likely exempt the majority of the tropi-

cal area from reaching the survival limit of 35◦C. However, there exists little knowledge on

safety thresholds for TW besides the survival limit (Sherwood, 2018), and 1◦C of TW in-

crease could have adverse health impact equivalent to that of several degrees of temperature

increase. TWwill thus have to be better calibrated to health impact before wider societal

implementation. Nonetheless, the confidence inTWmax projection provided in this work

still raises the confidence in projections of other calibrated heat stress metrics that accounts

for TW, such as the WBGT.
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*This chapter is a reproduction of Zhang & Fueglistaler (2019).

4
Increasing Precipitation Inequality with

Warming

4.1 “Rich-get-richer”

Tropical precipitation falls very unevenly in space. Fig. 4.1a shows that three quarters of

total precipitation falls on only a quarter of surface area when the observed monthly mean
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precipitation intensities from Tropical precipitationMeasuringMission (TRMM) (Huff-

man et al., 2007) are sorted in ascending order. In the context of global warming, climate

models predict enhancement of precipitation unevenness with increasing temperature

(Giorgi et al., 2011; Liu & Allan, 2013; Lintner et al., 2012; Polson &Hegerl, 2017), which

has implications for drought and flood projection and water resource management (Lint-

ner et al., 2012). The unevenness of precipitation distribution is usually measured with the

precipitation differences between the “wet” and the “dry” regions defined as, e.g., the upper

portion and the lower portion of precipitation intensity (Allan et al., 2010; Liu & Allan,

2013; Gu &Adler, 2018; Polson et al., 2013; Polson &Hegerl, 2017), the local wettest and

driest month of a year (Chou & Lan, 2012; Chou et al., 2013), the frequency of precipita-

tion above and below some thresholds (Lintner et al., 2012). Despite the variety of metrics,

the unevenness of precipitation is robustly projected to rise and this signal is emerging in

the observational records (Liu & Allan, 2013; Polson &Hegerl, 2017; Allan et al., 2010;

Chou & Lan, 2012; Gu &Adler, 2018).

Often cited in support of the strengthening contrast between wet and dry regions or

seasons with global warming is the precipitation change mechanisms (e.g. Lintner et al.,

2012) such as the “dry-get-drier, wet-get-wetter” mechanism (Held & Soden, 2006), the

“upped-ante” mechanism (Neelin et al., 2003), or the “rich-get-richer” mechanism (Chou

&Neelin, 2004). These mechanisms aim at explaining certain features of precipitation

change which we will briefly summarize below, but none of them directly addresses the

change in the unevenness. The mechanisms predicting future precipitation change usually

make use of two approximations: (i) The relative humidity in the boundary-layer remains

constant for energetic reasons (Held & Soden, 2000), so that the boundary-layer moisture
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increases by 7%/K following the Clausius-Clapeyron relationship. (ii) The large-scale circu-

lation pattern remains unchanged. The combination of these two approximations together

with the assumption that changes in surface temperature gradients are small results in the

amplification of moisture convergence or divergence by 7%/K with warming, leading to the

amplification of the precipitation-minus-evaporation pattern by the same amount. This

mechanism, widely known as “dry-get-drier, wet-get-wetter”, accurately captures the cli-

matological zonal-mean precipitation-minus-evaporation changes across all latitudes, yet

its utility in explaining precipitation changes over land is limited for reasons discussed in

Byrne &O’Gorman (2015). Another pair of mechanisms also result in the enhancement of

contrast between wet and dry regions. The “upped-ante” mechanism predicts drying over

marginally wet regions (Neelin et al., 2003). A warmer free troposphere raises the “ante” for

convection and moisture in the wet regions will have to increase to maintain positive con-

vective available potential energy (CAPE) while moisture in the dry regions is unable to in-

crease by the same amount. The enhanced moisture gradients between wet and dry regions

superimposed on the climatological advection from dry to wet regions thus cause nega-

tive moisture anomaly in between. The marginally convecting regions then fail to reach

the “upped-ante” for convection and therefore dries with warming. At the same time, the

“rich-get-richer” mechanism predicts a reduction in gross moist stability (GMS) due to in-

creased boundary-layer moisture and thus enhances convection in the wet regions (Chou &

Neelin, 2004), whereas tropospheric warming and deepening of convection may negate the

effect of “rich-get-richer” mechanism in some cases (Chou et al., 2009).

Common to the previous mechanisms is the decomposition of precipitation changes

into moisture changes and circulation changes (thermodynamic changes and dynamic
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changes), as the longtermmean precipitation can be regarded as the large-scale circulation

lifting and condensing the boundary-layer moisture. Such decomposition is also adapted

in idealized models for tropical precipitation distribution (Pendergrass & Gerber, 2016).

While the moisture changes (thermodynamic change) by 7%/K are robust in observa-

tions and climate models (Willett et al., 2007; Santer et al., 2007), in line with the afore-

mentioned constant relative humidity assumption, the circulation changes have more sig-

nificant uncertainty (Pfahl et al., 2017) especially on regional scales and relatively short

monthly timescales (Chadwick et al., 2013; Byrne &O’Gorman, 2015), which precludes

the aforementioned mechanisms from quantitatively explaining the robust increase in the

unevenness of tropical precipitation.

In the following, we present a mechanism that does not assume unchanged circulations.

We show that the unevenness of tropical precipitation is closely related to the frequency

distribution of subcloud moist static energy (MSE) and that the changes in subcloudMSE

distribution can be accurately captured by a simple scaling assuming constant relative hu-

midity and uniform warming.

4.2 Overview of the mechanism in this work

A simple picture of the tropical atmosphere goes that tropical free tropospheric tempera-

ture is roughly uniform in the horizontal and follows a moist adiabat in the vertical which

is determined by the subcloudMSE (see Eq. 1.2 for definition) in the convective regions

(Bretherton & Smolarkiewicz, 1989; Emanuel et al., 1994). The rest of the tropics have

lower subcloudMSE than the convective regions and are stable to deep convection. The

unevenness of the tropical precipitation distribution should be related to the distribution
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of subcloudMSE. Heuristically, if the subcloudMSE everywhere increases by the same

amount, the unevenness of precipitation should be largely unchanged. On the other hand,

if the highest subcloudMSEs for some reason increase faster than the rest, the free tropo-

sphere will warm up at a pace that the lower subcloudMSEs (in non-convective regions)

cannot keep up with. Therefore dry regions will become more stably stratified and convec-

tion has to concentrate to wet regions with warming resulting in the increasing unevenness

of precipitation. With global warming, the differential increase in MSE is a result of the

nonlinearity of the Clausius-Clapeyron relationship meaning that saturation vapor pres-

sures increase more for higher climatological temperatures, assuming uniform warming and

relatively unchanged relative humidity. Since convective regions are generally warmer and

contain more moisture than the non-convective regions, the same amount of warming will

induce more increase in moisture in the wet regions than in the dry regions.

The above mechanism bears some similarity with the “upped-ante” mechanism but is

essentially different in several ways. Firstly, although the “upped-ante” mechanism also

recognizes the role of free tropospheric temperature in setting the convective “ante”, the

changes in free tropospheric temperature are externally determined: In the El Niño case

it is due to teleconnection from neighboring Pacific, while in the global warming case it is

due to absorption of infrared radiation (Neelin et al., 2003). Therefore the “upped-ante”

mechanism is only able to address local precipitation changes but unable to tell whether a

reduction in one place could be compensated by increase in another. Here we argue that

free tropospheric temperature is endogenously determined by the highest subcloudMSE in

the tropics rather than local factors or radiation. Therefore we are able to propose a closed

theory for the distribution of precipitation within the entire tropics. Secondly, the “upped-
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Figure 4.1: Schematics of the the Gini index and the relative convective MSE.

ante” mechanism also mentions increasing moisture gradients with warming, yet the reason

of which hinges on different moisture budgets in wet and dry regions. Here we give a gen-

eral explanation applying to both wet and dry regions making use of the assumption of

constant relative humidity.

4.3 Metrics of unevenness

We use the Gini index, an economic index for inequality of income, as a single-value mea-

surement for the unevenness of precipitation distribution in space. Gini index has been

used by Rajah et al. (2014) to study the temporal distribution of precipitation before.

Monthly mean precipitation intensities between 30◦S and 30◦N are sorted in ascending

order then accumulated against area–This gives the same curve as in Fig. 1.2b. As illus-

trated in Fig. 4.1a, the Gini index is proportional to the area between the 1:1 line and the

cumulative precipitation fraction as a function of cumulative area fraction. The Gini index

ranges from 0 to 100, with 0 being completely even and 100 being extremely uneven. An

increase in the Gini index is an increase in the unevenness and is associated with a decrease

in the area of active convection. Compared to previous metrics for precipitation uneven-
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ness that usually bisect the full distribution at arbitrary thresholds, the advantage of the

Gini index is that it integrates the entire distribution of precipitation. Gini index does cap-

ture the enhanced contrast between wet and dry regions with warming as previous metrics

do.

We use the relative convective MSE, the difference between the convective MSE and the

tropical meanMSE, as a measurement of the shape of subcloudMSE distribution (Fig.

4.1(b)):

Relative convectiveMSE = Convective subcloudMSE−Mean subcloudMSE

(4.1)

Convective MSE is defined as the precipitation-weighted mean of subcloudMSE (see Eq.

1.3 for definition) treating precipitation as a proxy for convection intensity (Flannaghan

et al., 2014). Since the atmosphere is only unstable to convection when subcloudMSE is

high, the convective MSE is essentially a weighted mean of the highest subcloudMSE val-

ues. The relative convective MSE thus captures how close the entire distribution of tropical

subcloudMSE is to convective instability.

4.4 Precipitation unevenness explained by relative convectiveMSE

4.4.1 Data

We first use observations and reanalysis to support the proposed mechanism then use

global climate model simulations to understand future projections. precipitation obser-

vations from Tropical precipitationMeasuringMission (TRMM) (Huffman et al., 2007)

on 0.25◦x0.25◦ grid and Global Precipitation Climatology Project (GPCP) (Huffman
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et al., 2001) on 1◦x1◦ or 2.5◦x2.5◦ grid and precipitation reanalysis from European Cen-

tre for Medium-RangeWeather Forecasts reanalyses (ERA-Interim)(Dee et al., 2011) on

0.75◦x0.75◦ grid are used. When matching a precipitation dataset to the subcloudMSE

field based on ERA-Interim, the higher resolution dataset is interpolated to the grid of the

lower resolution dataset conserving total flux for precipitation or bilinearly for MSE. For

GPCP we only use data from the year 1988 on for data consistency. The microwave ocean

measurements from the Special Sensor Microwave Imager (SSM/I) have been added to the

blend of satellite infrared radiances and rain gauges since 1988. Inconsistency in the Gini

index of tropical precipitation before and after 1988 is observed which is likely a result of

adding new instruments. MSE is derived frommonthly mean ERA-Interim reanalysis field

and subcloudMSE is the average of MSE between 924.9 hPa and 1000.1 hPa following

Williams et al. (2009); Williams & Pierrehumbert (2017). For the global warming simula-

tions, we analyze monthly mean precipitation and diagnosed subcloudMSE from global

climate models from the CoupledModel Intercomparison Project phase 5 (CMIP5) (Tay-

lor et al., 2012) from the idealized CO2 increase experiment (increasing CO2 by 1% per year

for 140 years until quadrupling). Simulations forced with emissions following the RCP

8.5 scenario yield similar results. To overcome the sparseness of output vertical levels in

the subcloud layer (only 925 hPa and 1000 hPa) and lack of land information on 1000 hPa

in most models, we calculated the subcloudMSE as the average of near-surface MSE and

925-hPaMSE.
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Figure 4.2: Gini index scattered against relative convective MSE, convective MSE, and tropical mean MSE. Each point in
(a,b,c) is a month from January 2001 to December 2014. Each point in (d,e,f) is a year from 1988 to 2018.

4.4.2 Observations and reanalysis

In this section, we will show the correspondence between the relative convective MSE (con-

vective MSEminus the tropical meanMSE) defined in the previous section and the Gini

index of precipitation on multiple timescales in both observations/reanalysis and climate

models. However, in the rest of the paper, we will focus on the yearly timescale to under-

stand long-term trends.

In the observations and reanalysis data, the explained month-to-month variability is 77%

for TRMMprecipitation and 74% for GPCP precipitation for all months from 2001 to

2014 (Fig. 4.2a) and the explained interannual variability is 63% for ERA-Interim precip-

itation and 59% for GPCP precipitation from 1988 to 2018 (Fig. 4.2d). The explained
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interannual variability in TRMMprecipitation is only 32% (not shown) which could be

a result of short record length. It is worth noticing that the monthly data shown in Fig.

4.2a are not deseasonalized. While this demonstrates that the proposed mechanism works

for all seasons in general, there is the caveat that the high correlation is due to the strong

seasonality of both two variables rather than any causality. However, the fact that the two

components of relative convective MSE (convective MSE and the tropical meanMSE) are

not correlated with the Gini index even though they exhibit strong seasonality (Fig. 4.2b,

c) provides further support, and the same applies to the interannual variability (Fig. 4.2e,

f). Therefore, the high correlation between the Gini index and the relative convective MSE

shown in Fig. 4.2a and d is very likely a result of the mechanism proposed in Section 4.2.

This tight relationship only emerges on timescale longer than a month, whereas on a daily

timescale, the relationship is loosened by stochastic processes and the correlation coefficient

is much less.

4.4.3 CMIP5 models

In CMIP5 models, the tight relationship between the annual-mean Gini index and relative

convective MSE also applies. The unevenness of precipitation increases in 26 out of the 28

models examined here, indicated by the increased Gini index by the end of the simulation.

Relative convective MSE explains on average about 80% of variability in the annual-mean

Gini index in all models (Fig. 4.3). TheR2 values for all models are shown in Table 4.1,

where 21 out of 27 models hasR2 values of higher than 0.85, though 4 models showR2

values of below 0.41. Up to this point, we can conclude that the robust increasing precipi-

tation unevenness among models can be explained by the robust increase in relative convec-
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Figure 4.3: Gini index scattered against relative convective MSE of each CMIP5 model in the idealized CO2 increase
experiment. Each marker is a year. Selected models from different modeling centers are shown.

tive MSE, which is going to be understood with a simple scaling in the following section.

4.5 Increasing relative convectiveMSE due to Clausius-Clapeyron law

Fig. 4.4 shows the subcloudMSE distribution in the present climate (first 10 years of sim-

ulation) and a warmer climate (last 10 years of simulation) averaged over all models. In

addition to a shift of the entire distribution to higher MSE values with warming, the shape

of the distribution has also changed. The high end of the distribution has increased more in

MSE than the low end, resulting in the broadening of the distribution inMSE space. Since

the convective subcloudMSE is a weighted-mean of the highest subcloudMSE values (Fig.

4.1b), the relative convective MSE increases faster than the tropical mean with warming.

The change in the distribution of subcloudMSE can be explained by a uniform temper-

ature increase. We predict the distribution in the last 10 years of the simulation by perturb-
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Table 4.1: Modeled change in the Gini index of precipitation and relative convective MSE

# Model ∆ (Gini index) ∆ (Relative convective MSE) r2

(unit: J/g)
1 ACCESS1-0 3.50 2.34 0.91
2 ACCESS1-3 2.98 2.42 0.89
3 BNU-ESM 2.54 1.93 0.84
4 CCSM4 3.48 1.53 0.91
5 CESM1-BGC 3.36 1.43 0.93
6 CESM1-CAM5 2.98 1.80 0.92
7 CMCC-CM 5.14 2.96 0.96
8 CNRM-CM5 2.50 1.66 0.86
9 CNRM-CM5-2 2.42 1.70 0.86
10 CanESM2 2.36 1.45 0.88
11 FGOALS-g2 -0.38 0.75 0.23
12 FGOALS-s2 -0.36 1.24 0.04
13 GFDL-CM3 2.99 2.55 0.86
14 GFDL-ESM2G 1.97 1.80 0.78
15 GFDL-ESM2M 1.88 1.84 0.77
16 HadGEM2-ES 3.08 2.35 0.90
17 IPSL-CM5A-LR 3.53 2.76 0.96
18 IPSL-CM5A-MR 2.57 2.41 0.91
19 IPSL-CM5B-LR 2.02 1.97 0.85
20 MIROC-ESM 1.10 2.05 0.41
21 MIROC5 0.32 1.13 0.37
22 MPI-ESM-LR 5.40 3.15 0.96
23 MPI-ESM-MR 5.85 3.13 0.96
24 MPI-ESM-P 5.54 3.18 0.96
25 MRI-CGCM3 3.92 1.94 0.94
26 NorESM1-M 2.88 1.44 0.90
27 NorESM1-ME 3.07 1.54 0.88
28 bcc-csm1-1 2.60 1.69 0.89
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Figure 4.4: Multi‐model‐mean subcloud MSE distribution of subcloud MSE. The the first (solid blue) and last (solid red)
10 years of the simulation and the predicted distribution from perturbation of the first 10 years (dashed black line) are
shown. The dashed gray line shows the effect of temperature change only.

ing the subcloudMSE in the first 10 years. For each location and month, subcloudMSE is

perturbed by the amount∆h defined as follows:

∆h = cp∆T + Lvqα∆T (4.2)

where∆T is the change in tropical mean temperature, α = 7%/K which is approximately

the rate at which saturation vapor pressure increases with temperature according to the

Clausius-Clapeyron relationship, and q is the specific humidity. The∆h prediction in Eq.

(4.2) only uses local information for the specific humidity q and the tropical mean tem-

perature change (∆T ). In a nutshell, this scaling assumes unchanged relative humidities

with warming and uniform warming (The “uniform” here means a shift in temperature

histogram which does not necessarily mean spatially uniform warming. A uniform shift

in temperature histogram and a reshuffle of temperatures in space can result in spatially

non-uniform warming).

Despite the crudeness, the scaling captures the shift and the shape change of subcloud
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Figure 4.5: The shape change of subcloud MSE distribution is captured by the theoretical scaling. Subcloud MSE distri‐
bution in the first and last 10 years of the simulation and the predicted distribution from perturbation of the 10 years
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here.

56



0.5 1.0 1.5 2.0 2.5 3.0
Predicted change by theory (J/g)

0.5

1.0

1.5

2.0

2.5

3.0

Si
m

ul
at

ed
 c

ha
ng

e 
(J/

g)

1
2

3
4
5

6

7

89

10

11

12

1314

15

16

17

18
19

20

21
22

23

24

2526
27

Figure 4.6: Simulated change in relative convective MSE for each model vs. the predicted change by theory. The corre‐
sponding model for each number is listed in Table 4.1

.

MSE very accurately not only in the multi-model mean (Fig. 4.4), but also in each model

Fig. 4.5. The change in the relative convective MSE by the end of the simulation for each

model can be predicted by the difference between moisture in the convective regions (q̂;

precipitation-weighted moisture) and tropical mean moisture (q) given the tropical mean

warming (∆T ) by the end of the simulation following the Clausius-Clapeyron relation

(combining Eq. 4.1 and Eq. 4.2):

∆(Relative convectiveMSE) = α∆TLv(q̂ − q) (4.3)

Fig. 4.6 shows that Eq. (4.3) captures the inter-model scatter of simulated changes in the

relative convective MSE. Models with larger moisture gradients in the base state undergo

larger relative convective MSE change. The predicted changes are somewhat biased which

is not surprising given the simplicity of Eq. (4.2). Specifically, Eq. (4.2) does not take into
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account that relative humidity tends to weakly increase over the ocean and decrease over the

land (Boer, 1993) and the warming is not spatially uniform.

4.6 Conclusion

We have shown that the increasing unevenness of tropical precipitation with global warm-

ing can be understood as a result that the Clausius-Clapeyron relationship amplifying the

moist static energy (MSE) gradients in the subcloud layer. There are two essential links in

this chain of reasoning: (i) The unevenness of the monthly precipitation in both observa-

tions and models (measured by the Gini index) is well explained by the relative convective

MSE which is a bulk metric of how high the highest subcloudMSE is compared to the

tropical mean. (ii) The simulated change in relative convective MSE with global warming

can be very well captured by subcloudMSE change associated with uniform warming and

fixed relative humidity.

Our argument relates to the previously published concept of SST threshold for con-

vection (Palmen, 1948), whereby the invariant shape of SST distribution with warming

implies constant convective area since the SST threshold warms as much as the mean SST

(Williams et al., 2009; Johnson & Xie, 2010). Our work stresses that even uniform SST

warming leads to a decrease in convective area fraction as a consequence of the Clausius-

Clapeyron scaling of subcloudMSE, irrespective of whatever changes in large-scale circula-

tion may occur.
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*This chapter is a reproduction of Zhang et al. (2020).

5
Linearity of outgoing longwave radiation

5.1 A missing link from an atmospheric column to the global mean

A standard paradigm for analyzing the Earth’s climate and climate sensitivity is to treat it

as a linear system (e.g. Gregory et al., 2004). An implicit assumption in those treatments

is that the global-mean outgoing longwave radiation (OLR) is linear with the global-mean

surface temperature (Ts). Indeed, as is shown in Fig. 5.1a, the annual-mean global mean
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Figure 5.1: Clear‐sky OLR vs. surface temperature of CMIP5 models abrupt 4xCO2 experiment. (a) Annual‐mean and
global‐mean OLR vs. surface temperature. (b) The same as (a) but for the tropical (30◦S‐30◦N) mean.

clear-sky OLR (OLR) from the CoupledModel Intercomparison Project phase 5 (CMIP5)

(Taylor et al., 2012) increases in a strikingly linear fashion with Ts for each model after

abruptly quadrupling CO2 concentration. Though models warm by various amounts

after 150 years, the longwave clear-sky (LWCS) feedback (slope of the linear regression of

OLR against T s) varies by only 5% around the mean value of 1.88W/m2/K for the 9 mod-

els from different modeling centers shown, consistent with previous work (Andrews et al.,

2015). Notably, this value is also consistent with the idealized single-columnmodel calcula-

tion by Koll & Cronin (2018) over a wide range of surface temperatures.

This robust global mean LWCS feedback, however, is made up of non-uniform local

responses which moreover differ amongst models. The OLR increase per unit warm-

ing in the deep tropics is relatively low, and sometimes even negative, an effect known as

the “super-greenhouse effect”. This phenomenon has received some attention as a local

feedback (Raval & Ramanathan, 1989; Valero et al., 1997; Stephens & Greenwald, 1991;

Stephens et al., 2016; Dewey &Goldblatt, 2018; Raghuraman et al., 2019), but its rele-

vance for the global climate sensitivity is unclear given that other regions seem to emit more
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OLR per unit warming to compensate. Here we would like to understand this compensa-

tion and whether it is guaranteed under global warming.

The origin of OLR being linear with Ts rather than quartic (as suggested by the Stefan–

Boltzmann law) lies in the water vapor feedback given that the relative humidity (RH) re-

mains constant with warming (Ingram, 2010; Koll & Cronin, 2018). OLR calculation

for a single-column atmospheric model does confirm that there exists a wide range of Ts

where the LWCS feedback varies by less than±10% around 2.2W/m2/K if the atmospheric

column follows a warming trajectory of constant RH (Koll & Cronin, 2018). Here we con-

ceptually describe the behavior of this single-column atmospheric model with the following

equation:
∂OLR

∂Ts

∣∣∣∣
RH

≈ α ≈ 2W/m2/K (5.1)

However, unlike the idealized columnmodel, the vertical profile of RH in realistic atmo-

spheres is rarely uniform and inversions can complicate the vertical temperature profiles.

Furthermore, the RH profile in a given column need not be constant, as previous studies

have found that the geographical distribution of relative humidity is strongly affected by

the atmospheric circulation which affects the local OLR-Ts relationship (Raval et al., 1994;

Allan et al., 1999; Held & Soden, 2000). Therefore, Eq. 5.1 is not directly applicable to the

global mean of CMIP5 models shown in Fig. 5.1a. Note that since Koll and Cronin (2018)

motivated their theoretical and idealized modeling work with the observed joint distribu-

tion of local OLR vs. local Ts regardless of column RH, it has not been articulated how

their results can be applied to the linearity of the global-mean OLR vs. the global-mean Ts.

It is thus unclear whether the agreement between the global climate models and the ideal-

ized single-columnmodel is coincidental.
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Here we show that this agreement is not a coincidence. We first investigate the spatial

patterns of LWCS feedback in CMIP5 models to get a sense of how the spatial patterns

compensate and further show that the spatial patterns are tied to column RH changes. We

find that α is independent of column RH so long as the column RH is interpreted as being

in the free troposphere. We show analytically that the global mean LWCS feedback will be

equal to α so long as the global histogram of column RH doesn’t change with warming, a

criterion satisfied to a large degree by all CMIP5 models.

5.2 Spatial pattern of LWCS feedback and connection to columnRH

5.2.1 Materials andMethods

The LWCS feedback is diagnosed following the forcing-response analysis introduced by

Gregory et al. (2004). The monthly mean output of global climate models from Coupled

Model Intercomparison Project phase 5 (Taylor et al., 2012) for the abrupt 4xCO2 experi-

ment (abruptly quadrupling CO2 then integrate for 150 years) is analyzed. The local long-

wave clear-sky feedback is determined by linear regression of local clear-sky OLR onto local

surface temperature to emphasize the physical connection between OLR and local surface

temperature (The advantage of using locally defined feedback is discussed in Feldl & Roe

(2013)), which is not the same as earlier work that regresses local radiative quantities onto

global mean surface temperature (e.g. Andrews et al., 2015; Stephens et al., 2016). As the

clear-sky feedback is roughly constant throughout the entire length of the simulation (150

years; Fig. 5.1), we will not separate the fast response epoch (∼ the first 20 years) and the

slow response epoch (the rest 130 years or so) in the following analysis.

Column relative humidity is calculated as the water vapor mass divided by the saturated
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water vapor mass within the column. To calculate the water vapor mass between every two

pressure levels, specific humidity data are interpolated to the center of pressure levels as-

suming linearity with the logarithm of pressure, and then weighted by the pressure differ-

ence. The upper boundary for column RH calculation is chosen to be 300 hPa. Ideally,

the tropopause is the upper boundary for the column, but considering the limited output

levels of CMIP5 models, this choice is made to include as much of the tropospheric water

vapor as possible on condition of not including the stratosphere. This is because neglecting

the water vapor between 300 hPa and the tropopause makes little difference to column RH

due to very low temperature there, while contamination from the stratosphere can bias the

saturated water vapor a column can hold due to the inversion.

5.2.2 Results

We demonstrate the spatial pattern of the LWCS feedback and the ensuing compensation

which produces the robust value of α shown in Fig. 5.1a by gradually increasing the spatial

dimensions of our analysis. Fig. 5.2a shows the zonal-mean feedback obtained by regress-

ing the zonal-mean clear-sky OLR onto the zonal-mean surface temperature using decadal

mean data (to smooth over inter-annual internal variability). The zonal-mean LWCS feed-

back is not uniform across latitudes, with a minimum of 1W/m2/K in the deep tropics and

a typical value of 2W/m2/K in the extratropics in the multi-model mean. The linearity of

clear-sky OLRwith Ts can be assessed by theR2 of the local OLR-Ts linear regression. The

linearity is remarkably strong in the extratropics, indicated by close to 100% of explained

variance (Fig. 5.2b), and somewhat weaker in the tropics. Models also tend to agree better

in the extratropics as measured by the standard deviation of LWCS feedback (Fig. 5.2c).
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Figure 5.2: Spatial patterns of LWCS feedback in CMIP5 models. (a) Zonal‐mean LWCS feedback for each model
(dashed) and the multi‐model mean (solid). (b) TheR2 of the linear regression of zonal‐mean OLR onto the zonal‐mean
Ts for each model (dashed) and the multi‐model mean (solid). (c) Standard deviation of the zonal‐mean LWCS feedback
among models. (d), (e), and (f) show the same variables as in (a), (b), and (c) respectively on 2D maps.
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Figure 5.3: Spatial pattern of LWCS feedback and relative humidity changes. (a) Location‐specific longwave clear‐sky
feedback parameters (color shading) and the sensitivity of column relative humidity (RH) to surface temperature (black
contours) for GFDL‐CM3. Contours of ‐3%/K (thick dashed), ‐1%/K (thin dashed), 1%/K (thin solid), 3%/K (thick solid)
are shown. (b) Scatter plot of the two fields shown in (a) and the linear regression line. The red cross marks the point of
zero column RH change and a LWCS feedback of 1.88W/m2/K. (c) and (d) are the same as (a) and (b) but for CCSM4.

Fig. 5.2d shows the map of LWCS feedback. In the extratropics, similar to the zonal

mean (Fig. 5.2a), the LWCS feedback is relatively spatially uniform and lacks any land-

ocean contrast. In the tropics, however, regions of negative feedback emerge, which is the

“super-greenhouse effect” referred to in the Introduction. The linearity is again remarkably

strong in the extratropics for each location but is weak within the 30◦S-30◦N latitude band

(Fig. 5.2e). Models show very good agreement of the LWCS feedback in the extratropics,

while in the tropics the standard deviation across models is of the same magnitude as the

feedback itself (Fig. 5.2f), consistent with previous findings that models disagree on the

locations and strengths of “super-greenhouse effect” (Stephens et al., 2016).

To understand the spatial pattern and the model spread of the LWCS feedback shown

65



in Fig. 5.2, we consider the joint dependence of OLR on Ts and RH. Invoking Eq. 5.1 but

also allowing for RH changes with warming yields

dOLR

dTs

= α + β
dRH

dTs

, (5.2)

where β = ∂OLR
∂RH

∣∣
Ts
. Eq. 5.2 indicates that the spatial pattern of the LWCS feedback

should be closely related to the spatial pattern of dRH
dTs

. A similar idea is mentioned in Held

& Soden (2000). In testing this idea, we begin by using column RH and later refine this by

using the free tropospheric column RH.

Fig. 5.3 illustrates the accuracy of Eq. 5.2 with two models that feature different pat-

terns of LWCS feedback. In GFDL-CM3 the regions of the super-greenhouse effect are

mainly located on the equator in the western basin of the Pacific, while in CCSM4 these

regions expand off the equator and are mainly located in the central Pacific. For both mod-

els, the spatial patterns of LWCS feedback (color shading) and the column RH changes

(contours) are almost identical (Fig. 5.3a and c). To make this more explicit, we plot dOLR
dTs

vs. dRH
dTs

in Fig. 5.3b and d, taking only grid points within 30◦S-30◦N. The correlations for

GFDL-CM3 and CCSM4 are -0.89 and -0.93 respectively, and -0.87 for all the 9 CMIP5

models in Fig. 5.1 on average. Moreover, the intercept of the linear regression is on average

1.9W/m2/K which indeed recovers the value of α (see Fig. 5.3b and d for GFDL-CM3 and

CCSM4). In other words, for locations where column RH doesn’t change with warming,

the LWCS feedback is close to the value given by the single atmospheric columnmodel.

A key feature of Fig. 5.3 a and c is that column RH increases in the deep tropics are ac-

companied by column RH decreases in the subtropics. This implies that the local effects of

RH changes on OLRmight cancel out in the global mean, or even just in the tropical mean
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as indeed seen in Fig. 5.1b. This suggests that the robustness of the global mean LWCS

feedback evident in Fig. 5.1 results from a geographical rearrangement of column RH val-

ues, without any change in the column RH histogram. We test these ideas in Section 5, but

first, we return to the question to what extent Eq. 5.1 applies to realistic atmospheres with

non-uniform RH profiles.

5.3 OLR-Ts relationship conditioned upon columnRH

Eq. 5.1, a central result of (Koll & Cronin, 2018), was tested in an idealized single-column

atmospheric model with vertically uniform RH profiles and moist adiabatic temperature

profiles. However, we know that the real atmosphere exhibits more complicated vertical

structures of temperature and RHwhich influence the OLR (Shine & Sinha, 1991; Huang

et al., 2007).

To test the applicability of Eq. 5.1 to more realistic atmospheres, Fig. 5.4(a) shows the

OLR dependence on Ts conditioned upon various column RH ranging from 40% to 70%.

As expected, the OLR increases as column RH decreases for a given Ts. Furthermore, at

relatively low Ts, the slope (the LWCS feedback) is around 1.9W/m2/K for all column RH

values, consistent with Eq. 5.1. However, OLR decreases with Ts at Ts above 303K, which

is inconsistent with Eq. 5.1. Although a flattening of the OLR-Ts curve is expected from

the closing of the water vapor window (Koll & Cronin, 2018), this happens at a much

higher temperature and cannot explain the decreases of OLRwith Ts seen here. This de-

crease of OLR with Ts is distinct from the super-greenhouse effect discussed above because

here it occurs even at fixed column RH.

What then causes this breakdown of Eq. 5.1 in realistic atmospheric columns? A single
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Figure 5.4: Clear‐sky OLR vs. surface temperature conditioned upon various column RH values. Data from 9 CMIP5
models are included in the statistics. Column RH for 300hPa‐1000hPa is used for (a), (b), (c) and column RH for
300hPa‐850hPa (free troposphere) is used for (d), (e), (f). (a) and (d) include both land and ocean data, while (b) and
(e) include land only, and (c) and (f) include ocean only. The dashed black line indicates a reference slope of 1.9W/m2/K.
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column RH is insufficient for representing the vertical structure of the water vapor in real-

istic climate models, as the boundary-layer RH (Held & Soden, 2000; Byrne &O’Gorman,

2016) and the free tropospheric RH (Pierrehumbert, 1998; Pierrehumbert & Roca, 1998;

Galewsky et al., 2005; Romps, 2014) are determined by essentially independent processes

which are sometimes decoupled. Furthermore, it is known that in contrast to the upper

troposphere, the influence of the boundary-layer RH on OLR is quite weak (Soden &

Held, 2006; Soden et al., 2008). Physically this is because the boundary-layer air temper-

ature is close to Ts and an increase in the emission from the boundary-layer water vapor is

approximately equal to the decrease in surface emission. To strengthen this point, we con-

duct experiments with PyRADS, a line-by-line radiation code, of varying free-tropospheric

and boundary-layer RH separately under fixed Ts at 288K (roughly equal to the present-

day global mean temperature). We find that even though the total water vapor path above

850 hPa is only 1.4 times of that below 850 hPa, the OLR responses of the former are 17

times of that of the latter. This suggests that we should focus on free-tropospheric RH

rather than boundary-layer RH. Fig. 5.4d shows the same OLR-Ts relationship as in Fig.

5.4a but now conditioned on the free-tropospheric (300 hPa-850 hPa) column RH.With

this RH variable, the decrease in OLRwith Ts at higher Ts disappears, and Eq. 5.1 applies

for most RH and Ts values.

Returning to the decrease of OLR with Ts at high Ts as shown in Fig. 5.4a, we find

that this decrease is caused by the transition from the lower Ts values populated by ocean

regions to those higher Ts values populated by land regions. At fixed column RH, the

boundary layer is dryer and the free troposphere is moister over land than over the ocean.

Thus, as one transitions from ocean to land columns at fixed column RH, one swaps boundary-
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layer moisture for free-tropospheric moisture which reduces the OLR, leading to the kink

in Fig. 5.4a at roughly 303K. Indeed, land alone has a more linear OLR-Ts relationship

(Fig. 5.4(b)), though a mild decrease of OLR with Ts still exists for the warmest oceans

(Fig. 5.4(c)) located in between the subtropical deserts (e.g., the Red Sea) over which the

boundary layer is very dry and more “land-like”. Note that this decrease of OLR with Ts

conditioned upon column RH is not the same as the super-greenhouse effect over tropical

oceans which is primarily the effect of changing RH as discussed in the previous section.

Using free-tropospheric column RH, the land-ocean contrast is significantly reduced (Fig.

5.4e and f) and the OLR-Ts relationship over land is an extension that over the ocean to

higher Ts.

To summarize, despite the diversity of RH and temperature profiles in realistic climate

models, the LWCS feedback (α) is indeed independent of both Ts and RH consistent with

Eq. 5.1 so long as RH is interpreted as free-tropospheric column RH. Therefore, Eq. 5.1

seems applicable to realistic atmospheres and we can turn to the additional condition on

column RH distribution.

5.4 Condition for robust global-mean LWCS feedback

Now we answer the question under what conditions the compensation of local LWCS

feedback seen in Section 3 is guaranteed to produce a global-mean LWCS feedback around

2W/m2/K, consistent with Eq. 5.1. In particular, we show that a sufficient condition is

that the free-tropospheric column RH distribution, denoted as F (RH), stays invariant

with global warming.

We denote the joint distribution of Ts and column RH as f(Ts,RH)whose integral in
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Ts gives F (RH). For convenience, we express the OLR in the following functional form

which is equivalent to Eq. 5.1:

OLR(Ts,RH) = αTs +R(RH), (5.3)

where the specific functional form ofR(RH) is not of concern here. The global-mean

clear-sky OLR (OLR) is thus

OLR =

∫
dRH

∫
dTsf(Ts,RH)OLR(Ts,RH) (5.4)

= α

∫
dRH

∫
dTsf(Ts,RH)Ts +

∫
dRHR(RH)

∫
dTsf(Ts,RH).(5.5)

The integral in the first term of Eq. 5.5 gives the global mean surface temperature (Ts) and

the integral over Ts in the second term gives the column RH distribution, therefore

OLR = αTs +

∫
dRHR(RH)F (RH), (5.6)

and thus

δOLR = αδTs +

∫
dRHR(RH)δF (RH). (5.7)

If the column RH distribution remains constant with global warming, i.e.,

δF (RH) ≡ 0, (5.8)
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Figure 5.5: The invariant column RH histograms in CMIP5 models with warming. (a) The multi‐model‐mean histogram
of free‐tropospheric column RH in the first 10 years (solid; labeled “present”) and the last 10 years (dashed; labeled
“warmer”) of the simulation. (b) Time series of the multi‐model‐mean free‐tropospheric RH histogram throughout the
simulation. (c) The same as (a) but for GFDL‐CM3. (d) The same as (b) but for GFDL‐CM3. (e) The same as (a) but for
CCSM4. (f) The same as (b) but for CCSM4.

then we have

δOLR

δTs

= α. (5.9)

Therefore, the global-mean LWCS feedback is equal to the constant-RH value α (Eq. 5.1),

Fig. 5.4) so long as the global column RH histogram is invariant under global warming.

Eq. 5.9 is thus the global-mean analog for Eq. 5.1, and Eq. 5.8 is the global analog for the

fixed-RH condition in the single-columnmodel.

This additional condition, described by Eq. 5.8, is indeed satisfied in CMIP5 models.

Fig. 5.5a shows that the multi-model mean histogram of free-tropospheric column RH is

largely unchanged between the first and the last 10 years of the simulation, and the same

is true for individual models (see Fig. 5.5c and Fig. 5.5e for GFDL-CM3 and CCSM4 as

examples). Furthermore, this invariance holds on a year-to-year basis (Fig. 5.5b, d, and f)

which guarantees the linearity of the global-mean OLR vs. global-mean Ts for annual mean
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data as shown in Fig. 5.1. This result is consistent with previous work that finds that the

free tropospheric RH is overwhelmingly controlled by the large-scale circulation (Pierre-

humbert & Roca, 1998; Galewsky et al., 2005; Sherwood &Meyer, 2006), and constant

free-tropospheric RH has long been proved to be an accurate leading order assumption

with global warming (Manabe &Wetherald, 1975). Note that these results are also true if

boundary-layer RH is included in the column RH calculation.

5.5 Summary

This paper aims to connect the idealized model results of (Koll & Cronin, 2018) to the be-

havior of comprehensive climate models, in line with the hierarchical approach to climate

science (Held, 2005; Jeevanjee et al., 2017; Maher et al., 2019). In particular, we sought to

understand whether the robustness of LWCS feedback in CMIP5 models could be traced

back to the single-column physics of (Koll & Cronin, 2018). We found that indeed it could,

on the condition that the global free-tropospheric column RH histogram remains invariant

under warming. This invariance of the global RH histogram is a global analog of the fixed-

RH condition for single-columnmodels. In this sense, we have shown that “fixed RH” is a

good approximation for the atmosphere under global warming, and the linearity of global-

mean OLR is a direct consequence of this.

This invariance of the global column RH histogram is manifest in Fig. 5.2a and c where

a moistening of the deep tropics is accompanied by the drying of the subtropics. The super-

greenhouse effect discussed in the Introduction arises when this deep-tropical moistening

is strong enough to make dOLR
dTs

negative (see Eq. 5.2). However, our results show that any

such negative dOLR
dTs

values must be offset elsewhere by anomalously positive values. This
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means that, in a global or even a tropical-mean context, the clear-sky super-greenhouse ef-

fect is constrained to disappear (as evident in Fig. 5.1) and thus has little impact on large-

scale climate.

74



-1
Summary and Outlook

A lot of studies in our field use maps as the backdrop of figures. As a result, maps have

become the backdrop of thinking and understanding. However, this fixed-in-space per-

spective sometimes introduces unnecessary complexity and even confusion – The super-

greenhouse effect in the previous chapter is one example. In this dissertation, we take a less

worn path to understand the tropical climate, that is to emphasize probability distributions
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rather than geographical locations. We expect the warmest SSTs and the highest subcloud

MSEs to determine the free-tropospheric temperature profile no matter where they are lo-

cated. The average subcloudMSE during times of deep convection is roughly the same re-

gardless of location and land-ocean contrast. The annual-maximumwet-bulb temperatures

over land respond to the magnitude of the warmest SSTs which are not fixed in space due

to ENSO oscillation. The Gini index of precipitation can be captured by a simple metric

of the highest subcloudMSEs relative to the tropical mean. The super-green house effect

over tropical oceans is simply due to the spatial movement of convective centers and the

positive correlation between convective activity and SST. These results exemplify the gain

of deemphasizing the geographical location.

This dissertation’s work could be further developed in many ways. One next step is to

investigate the interplay of subcloudMSE distribution, the Gini index of precipitation, and

the longwave and shortwave cloud radiative effect. There are also unanswered questions re-

garding the uniform convective MSE in Chapter 2: What determines the latitudinal range

of the uniformity and how it is related to the lack of seasonality of the warmest SSTs shown

in Chapter 1. There is also a question of the control of extratropical heat stress. I expect to

see future research on those open questions.
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